Refine Your Search

Topic

Author

Search Results

Technical Paper

3DOF Vehicle Dynamics Model for Fuel Consumption Estimation

2024-04-09
2024-01-2757
The dynamic model is built in Siemens Simcenter Amesim platform and simulates the performances on track of JUNO, a low energy demanding Urban Concept vehicle to take part in the Shell Eco-Marathon competition, in which the goal is to achieve the lowest fuel consumption in covering some laps of a racetrack, with limitations on the maximum race time. The model starts with the longitudinal dynamics, analysing all the factors that characterize the vehicle’s forward resistance, like aerodynamic forces, altimetry changes and rolling resistance. To improve the correlation between simulation and track performances, the model has been updated with the implementation of a Single-Track Model, including vehicle rotation around its roll axis, and a 3D representation of the racetrack, with an automatic trajectory following control implemented. This is crucial to characterise the vehicle’s lateral dynamics, which cannot be neglected in simulating its performances on track.
Technical Paper

A Deep Learning based Virtual Sensor for Vehicle Sideslip Angle Estimation: Experimental Results

2018-04-03
2018-01-1089
Modern vehicles have several active systems on board such as the Electronic Stability Control. Many of these systems require knowledge of vehicle states such as sideslip angle and yaw rate for feedback control. Sideslip angle cannot be measured with the standard sensors present in a vehicle, but it can be measured by very expensive and large optical sensors. As a result, state observers have been used to estimate sideslip angle of vehicles. The current state of the art does not present an algorithm which can robustly estimate the sideslip angle for vehicles with all-wheel drive. A deep learning network based sideslip angle observer is presented in this article for robust estimation of vehicle sideslip angle. The observer takes in the inputs from all the on board sensors present in a vehicle and it gives out an estimate of the sideslip angle. The observer is tested extensively using data which are obtained from proving grounds in high tire-road friction coefficient conditions.
Technical Paper

A Linear Thermal Model for an Automotive Clutch

2000-03-06
2000-01-0834
The paper presents a diaphragm spring clutch linear thermal model. The main model aim was to estimate the temperature on the clutch disc slipping surfaces. That objective was pursued through a linear model to overcome the memory and computing time problems required by models with a more complex structure. The model parameters were experimentally identified. The model was validated employing a test bench, considering shift transient different as far as energy dissipated, clutch disc wear, frequency of shifting, gearbox temperature. The model structure, the methodology adopted to identify the model parameters, the experimental results obtained are presented and discussed.
Technical Paper

A Methodology for Parameter Estimation of Nonlinear Single Track Models from Multibody Full Vehicle Simulation

2021-04-06
2021-01-0336
In vehicle dynamics, simple and fast vehicle models are required, especially in the framework of real-time simulations and autonomous driving software. Therefore, a trade-off between accuracy and simulation speed must be pursued by selecting the appropriate level of detail and the corresponding simplifying assumptions based on the specific purpose of the simulation. The aim of this study is to develop a methodology for map and parameter estimation from multibody simulation results, to be used for simplified vehicle modelling focused on handling performance. In this paper, maneuvers, algorithms and results of the parameter estimation are reported, together with their integration in single track models with increasing complexity and fidelity. The agreement between the multibody model, used as reference, and four single track models is analyzed and discussed through the evaluation of the correlation index.
Technical Paper

A Methodology to Investigate the Dynamic Characteristics of ESP and EHB Hydraulic Units

2006-04-03
2006-01-1281
The paper deals with the Hardware-In-the-Loop based methodology which was adopted to evaluate the dynamic characteristics of Electronic Stability Program (ESP) and Electro-Hydraulic Brake (EHB) components. Firstly, it permits the identification of the time delays due to the hardware of the actuation system. Secondly, the link between the hardware of the hydraulic unit and a vehicle model running in real time permits the objective evaluation of the performance induced by the single components of different hydraulic units in terms of vehicle dynamics. The paper suggests the main parameters and tests which can help the car manufacturer in evaluating ESP hydraulic units, without expensive road tests.
Journal Article

A Reverse-Engineering Method for Powertrain Parameters Characterization Applied to a P2 Plug-In Hybrid Electric Vehicle with Automatic Transmission

2020-06-30
2020-37-0021
Over the next decade, CO2 legislation will be more demanding and the automotive industry has seen in vehicle electrification a possible solution. This has led to an increasing need for advanced powertrain systems and systematic model-based control approaches, along with additional complexity. This represents a serious challenge for all the OEMs. This paper describes a novel reverse engineering methodology developed to estimate relevant powertrain data required for fuel consumption-oriented hybrid electric vehicle (HEV) modelling. The estimated quantities include high-voltage battery internal resistance, electric motor and transmission efficiency, gearshift thresholds, torque converter performance diagrams, engine fuel consumption map and front/rear hydraulic brake torque distribution. This activity provides a list of dedicated experimental tests, to be carried out on road or on a chassis dynamometer, aiming at powertrain characterization thanks to a suitable post-processing algorithm.
Technical Paper

A Smart Measuring System for Vehicle Dynamics Testing

2020-04-14
2020-01-1066
A fast measurement of the car handling performance is highly desirable to easily compare and assess different car setup, e.g. tires size and supplier, suspension settings, etc. Instead of the expensive professional equipment normally used by car manufacturers for vehicle testing, the authors propose a low-cost solution that is nevertheless accurate enough for comparative evaluations. The paper presents a novel measuring system for vehicle dynamics analysis, which is based uniquely on the sensors embedded in a smartphone and therefore completely independent on the signals available through vehicle CAN bus. Data from tri-axial accelerometer, gyroscope, GPS and camera are jointly used to compute the typical quantities analyzed in vehicle dynamics applications.
Journal Article

A Theoretical Investigation of the Influence of Powertrain Mounts on Transmission Torsional Dynamics

2017-03-28
2017-01-1124
This paper investigates the effect of the powertrain mounting system on the linear and nonlinear torsional dynamical behaviour of a transmission system. To this aim, two dynamic models, one with rigid mounts and the other with flexible mounts, are presented and compared: the first model considers only the torsional dynamics of transmission and driveline, while the second model includes also a 3 degrees-of-freedom powertrain block. The mechanical coupling and interaction between the powertrain block and transmission system is discussed and formulated. These models are then analyzed in terms of vibrational mode shapes, natural frequencies and Frequency Response Functions (FRFs); a sensitivity analysis of the main transmission parameters, e.g. the gear ratio, is also presented.
Journal Article

Accelerated Sizing of a Power Split Electrified Powertrain

2020-04-14
2020-01-0843
Component sizing generally represents a demanding and time-consuming task in the development process of electrified powertrains. A couple of processes are available in literature for sizing the hybrid electric vehicle (HEV) components. These processes employ either time-consuming global optimization techniques like dynamic programming (DP) or near-optimal techniques that require iterative and uncertain tuning of evaluation parameters like the Pontryagin’s minimum principle (PMP). Recently, a novel near-optimal technique has been devised for rapidly predicting the optimal fuel economy benchmark of design options for electrified powertrains. This method, named slope-weighted energy-based rapid control analysis (SERCA), has been demonstrated producing results comparable to DP, while limiting the associated computational time by near two orders of magnitude.
Technical Paper

An Objective Evaluation of the Comfort During the Gear Change Process

2007-04-16
2007-01-1584
This paper presents the methodology adopted by Politecnico di Torino Vehicle Dynamics Research Team to obtain objective indices for the evaluation of the comfort during the gear change process. Some test drivers and different passengers traveled on a test vehicle and assigned marks on the basis of their subjective feeling of comfort during the gearshifts. The comparison between the most significant subjective evaluations and the experimental values obtained by the instruments located on the vehicle is presented. As a consequence, some indices (based on physical parameters) to evaluate the efficiency and the comfort of the gearshift process are obtained. They are in good agreement with the subjective evaluations of the drivers and the passengers. The second part of the paper presents a driveline and vehicle model which was conceived to reproduce the phenomena experimented on the vehicle. The experimental validation of the model is presented.
Journal Article

An Unsupervised Machine-Learning Technique for the Definition of a Rule-Based Control Strategy in a Complex HEV

2016-04-05
2016-01-1243
An unsupervised machine-learning technique, aimed at the identification of the optimal rule-based control strategy, has been developed for parallel hybrid electric vehicles that feature a torque-coupling (TC) device, a speed-coupling (SC) device or a dual-mode system, which is able to realize both actions. The approach is based on the preliminary identification of the optimal control strategy, which is carried out by means of a benchmark optimizer, based on the deterministic dynamic programming technique, for different driving scenarios. The optimization is carried out by selecting the optimal values of the control variables (i.e., transmission gear and power flow) in order to minimize fuel consumption, while taking into account several constraints in terms of NOx emissions, battery state of charge and battery life consumption.
Technical Paper

Assessment through Numerical Simulation of the Impact of a 48 V Electric Supercharger on Performance and CO2 Emissions of a Gasoline Passenger Car

2019-04-02
2019-01-1284
The demanding CO2 emission targets are fostering the development of downsized, turbocharged and electrified engines. In this context, the need for high boost level at low engine speed requires the exploration of dual stage boosting systems. At the same time, the increased electrification level of the vehicles enables the usage of electrified boosting systems aiming to exploit the opportunities of high levels of electric power and energy available on-board. The aim of this work is therefore to evaluate, through numerical simulation, the impact of a 48 V electric supercharger (eSC) on vehicle performance and fuel consumption over different transients. The virtual test rig employed for the analysis integrates a 1D CFD fast running engine model representative of a 1.5 L state-of-the-art gasoline engine featuring an eSC in series with the main turbocharger, a dual voltage electric network (12 V + 48 V), a six-speed manual transmission and a vehicle representative of a B-SUV segment car.
Technical Paper

Base Model Simulator (BMS) - A Vehicle Dynamics Model to Evaluate Chassis Control Systems Performance

2005-04-11
2005-01-0401
Chassis Control Systems development methodology is nowadays strongly based on analyzing performance by using PC vehicle dynamics simulation. Generally, the overall design, test bench and road validation process is continuously accompanied by simulation. The Base Model Simulator was developed by the Vehicle Dynamics Group at the Department of Mechanics of Politecnico di Torino both to satisfy this requirement and for educational purposes. It considers a complete vehicle dynamics mathematical model, including driver, powertrain, driveline, vehicle body, suspensions, steering system, brakes, tires. The Base Model Simulator takes in account the suspensions system elastokinematics, including, for example, automatic computation of camber variation during the vehicle roll motions. Tire model considered are either Pacejka's models or experimental data.
Technical Paper

Braking System Components Modelling

2003-10-19
2003-01-3335
The paper deals with a method implemented to study braking systems design, modelling components' characteristics through commercial software. It summarizes the potential improvement possible by using modelling techniques in chassis systems design. The first part consisted in producing a passive braking system model. A first validation was carried out on a test bench by using components of different braking systems. Particular attention was devoted to booster modelization both in semi-stationary and dynamic conditions. The second part was callipers, roll-back and thermal phenomena modelization. Finally, it were modelled Anti-lock Braking System (ABS) and Vehicle Dynamics Control (VDC) Hydraulic Units and their integration with control strategies and with vehicle dynamics model.
Technical Paper

Customer Oriented Vehicle Dynamics Assessment for Autonomous Driving in Highway

2019-04-02
2019-01-1020
Autonomous Driving is one of the main subjects of academic research and one important trend in the automotive industry. With the advent of self-driving vehicles, the interest around trajectory planning raises, in particular when a customer-oriented analysis is performed, since more and more the carmakers will have to pay attention to the handling comfort. With that in mind, an experimental approach is proposed to assess the main characteristics of human driving and gain knowledge to enhance quality of autonomous vehicles. Focusing on overtaking maneuvers in a highway environment, four comfort indicators are proposed aiming to capture the key aspects of the chosen paths of a heterogeneous cohort. The analysis of the distribution of these indicators (peak to peak lateral acceleration, RMS lateral acceleration, Smoothness and Jerk) allowed the definition of a human drive profile.
Technical Paper

Delivery-Valve Effects on the Performance of an Automotive Diesel Fuel-Injection System

1999-03-01
1999-01-0914
An integrated theoretical and experimental investigation was carried out in order to evaluate the effects that the pump delivery-valve assembly can produce on the performance of a pump-line-nozzle fuel-injection system with a distributor-type pump for automotive diesel engines. Four distinct delivery valves, one constant-pressure valve, one reflux-hole and two relief-volume valves, were separately fitted to the pump and for each configuration of the delivery assembly the system behavior was analyzed under full-load steady-state operations in a wide pump angular-speed range. Fuel injection-rate as well as local pressure time-histories were investigated, paying specific attention to the occurrence and temporal evolution of cavitation phenomena in the pressure pipe and injector nozzle, after the valve closure. The flow across the delivery-valve assembly was theoretically examined in order to ascertain any instability sources as possible causes of cyclic fluctuations.
Technical Paper

Design, Construction and Experimental Testing of an High Efficiency Continuously Variable Transmission

2009-04-20
2009-01-1542
The design, the construction and the experimental characterization of a Continuously Variable Transmission (CVT) based on the rolling contact between conical bodies are analyzed. The studied CVT has been developed in order to allow a wide ratio range (up to 9), high torque capability (up to 500 Nm) and compactness. The main design problems and related solutions are explained focusing on the following aspects: contact area optimization, modular approach and development of different CVT versions to meet the current powertrain market needs. A total mechanical efficiency from 82% to 91% has been measured through experimental testing on a prototype.
Technical Paper

Differentials Modeling for Four Wheels Drive

2006-04-03
2006-01-0581
This paper deals with modeling the most commonly used passive and active differentials, conceived for Four Wheel Drive (4WD) systems. The vehicle dynamics of a 4WD equipped with the modeled differentials is investigated. The models presented are both based on a functional approach and, according to a more detailed analysis, based on the physical performance of the components constituting a differential.
Journal Article

Driving Cycle and Elasticity Manoeuvres Simulation of a Small SUV Featuring an Electrically Boosted 1.0 L Gasoline Engine

2019-09-09
2019-24-0070
In order to meet the CO2 emission reduction targets, downsizing coupled with turbocharging has been proven as an effective way in reducing CO2 emissions while maintaining and improving vehicle driveability. As the downsizing becomes widely exploited, the increased boost levels entail the exploration of dual stage boosting systems. In a context of increasing electrification, the usage of electrified boosting systems can be effective in the improvement of vehicle performances. The aim of this work is therefore to evaluate, through numerical simulation, the impact of different voltage (12 V or 48 V) electric superchargers (eSC) on an extremely downsized 1.0L engine on vehicle performance and fuel consumption over different transient manoeuvres.
Technical Paper

Dual Clutch Transmission Vibrations during Gear Shift: A Simulation-Based Approach for Clunking Noise Assessment

2019-06-05
2019-01-1553
A novel methodology, for the assessment of Dual Clutch Transmission vibrations during gear shifts, is proposed in this paper. It is based on the capability to predict through numerical simulation a typical dynamic quantity used to objectively evaluate the vibrational behavior of a gearbox during experimental tests, i.e. the acceleration of a point on the external surface of the gearbox housing. To achieve this result, a two-step approach is proposed: an accurate simulation of the internal transmission dynamics and an offline uncoupled computation of the gearbox housing acceleration from the output of the simulation. The first step required the definition of a suitable nonlinear lumped parameter model of the car equipped with a DCT that was implemented in Amesim software.
X