Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

A Numerical Analysis of Terrain and Vehicle Characteristics in Off-Road Conditions through Semi-Empirical Tire Contact Modelling

2024-04-09
2024-01-2297
In the last decades, the locomotion of wheeled and tracked vehicles on soft soils has been widely investigated due to the large interest in planetary, agricultural, and military applications. The development of a tire-soft soil contact model which accurately represents the micro and macro-scale interactions plays a crucial role for the performance assessment in off-road conditions since vehicle traction and handling are strongly influenced by the soil characteristics. In this framework, the analysis of realistic operative conditions turns out to be a challenging research target. In this research work, a semi-empirical model describing the interaction between a tire and homogeneous and fine-grained soils is developed in Matlab/Simulink. The stress distribution and the resulting forces at the contact patch are based on well-known terramechanics theories, such as pressure-sinkage Bekker’s approach and Mohr-Coulomb’s failure criterion.
Technical Paper

Co-Simulation of a Specialized Tractor for Autonomous Driving in Orchards

2022-09-16
2022-24-0025
The concept of autonomous driving is becoming increasingly familiar in the automotive and “in-door” automation systems fields. Furthermore, the industrial development is focusing its efforts on industry 4.0, whose some main features are data transfer, programming, systems interconnection and automation. The agricultural sector just recently has experienced the first examples of autonomous agricultural vehicles, although agricultural mechanization has reached a good level of automation. Indeed, many examples of automatic machineries are already present in the market such as little robots for the execution of some operations. This work focuses on modelling and simulation of a self-driving orchard tractor. The main goal was to reproduce the behaviour of the specialized vehicle, moving in an orchard or a vineyard and conducting automatic or semi-automatic operations.
Technical Paper

Delivery-Valve Effects on the Performance of an Automotive Diesel Fuel-Injection System

1999-03-01
1999-01-0914
An integrated theoretical and experimental investigation was carried out in order to evaluate the effects that the pump delivery-valve assembly can produce on the performance of a pump-line-nozzle fuel-injection system with a distributor-type pump for automotive diesel engines. Four distinct delivery valves, one constant-pressure valve, one reflux-hole and two relief-volume valves, were separately fitted to the pump and for each configuration of the delivery assembly the system behavior was analyzed under full-load steady-state operations in a wide pump angular-speed range. Fuel injection-rate as well as local pressure time-histories were investigated, paying specific attention to the occurrence and temporal evolution of cavitation phenomena in the pressure pipe and injector nozzle, after the valve closure. The flow across the delivery-valve assembly was theoretically examined in order to ascertain any instability sources as possible causes of cyclic fluctuations.
Technical Paper

Experimental Ride Comfort Analysis of an Electric Light Vehicle in Urban Scenario

2020-04-14
2020-01-1086
Urban mobility represents one of the most critical global challenges nowadays. Several options regarding design and power sources technologies were recently proposed; among which electric and hybrid vehicles are quite successful to meet the increasingly restrictive environmental targets. This significant goal may affect the perceived vehicle comfort and drivability, especially in everyday urban scenarios. The purpose of this paper is to carry out a comparison in terms of comfort between vehicles belonging to different categories, but all designed for urban mobility: an electric 2-passenger quadricycle used during the demonstration phase of the European project STEVE, an internal combustion engine 2-passenger car (Smart Fortwo), an electric 4-passenger car (Bolloré Bluecar) and an internal combustion engine 4-passenger car (Fiat 500). Leading European car-sharing services use the last three car models.
Technical Paper

Experimental-Numerical Correlation of a Multi-Body Model for Comfort Analysis of a Heavy Truck

2020-04-14
2020-01-0768
In automotive market, today more than in the past, it is very important to reduce time to market and, mostly, developing costs before the final production start. Ideally, bench and on-road tests can be replaced by multi-body studies because virtual approach guarantees test conditions very close to reality and it is able to exactly replicate the standard procedures. Therefore, today, it is essential to create very reliable models, able to forecast the vehicle behavior on every road condition (including uneven surfaces). The aim of this study is to build an accurate multi-body model of a heavy-duty truck, check its handling performance, and correlate experimental and numerical data related to comfort tests for model tuning and validation purposes. Experimental results are recorded during tests carried out at different speeds and loading conditions on a Belgian blocks track. Simulation data are obtained reproducing the on-road test conditions in multi-body environment.
Journal Article

Fuel Consumption Reduction on Heavy-Duty and Light-Duty Commercial Vehicles by Means of Advanced Central Tire Inflation Systems

2018-04-03
2018-01-1334
Tire inflation pressure has a relevant impact on fuel consumption and tire wear, and therefore affects both CO2 emissions and the total cost of ownership (TCO). The latter is extremely important in the case of commercial vehicles, where the cost of fuel is responsible for about 30% of the TCO. A possible advanced central tire inflation system, which is able to inflate and deflate tires autonomously, as part of a smart energy management system and as an active safety device, has been studied. This system allows misuse due to underinflation to be avoided and adapts the tires to the current working conditions of the vehicle. For instance, the tire pressure can be adapted according to the carried load or during tire warm-up. An on board software is able to evaluate the working conditions of the vehicle and select the tire pressure that minimizes the energy expense, the TCO, or the braking distance, according to a multi-objective optimization strategy.
Technical Paper

HYBUS: A New Hybrid Bus for Urban Public Transportation

2013-09-08
2013-24-0081
Nowadays the increasing demand for sustainable mobility has fostered the introduction of innovative propulsion systems also in the public transport sector in order to achieve a significant reduction of pollutant emissions in highly congested urban areas. Within this context this paper describes the development of the HYBUS, an environmental friendly hybrid bus for on-road urban transportation, which was jointly carried out by Pininfarina and Politecnico di Torino in the framework of the AMPERE project. The first prototype of the bus was built by integrating an innovative hybrid propulsion system featuring a plug-in series architecture into the chassis of an old IVECO 490 TURBOCITY. The bus is 12 meters long and has a capacity of up to 116 passengers in the original layout. The project relied on a modular approach where the powertrain could be easily customized for size and power depending on the specific application.
Technical Paper

Impact of Different LCI Modelling Scenarios on the LCA Results, A Case Study for the Automotive Sector

2023-04-11
2023-01-0884
Since vehicles are comprised of thousands of components, it is essential to reduce the Life Cycle Inventory (LCI) modelling workload. This study aims to compare different LCI modeling workload-reducing scenarios to provide a trade-off between the workload efforts and result accuracy. To achieve the optimal balance between computational effort and data specification requirements, the driver seat is used as a case study, instead of the entire vehicle. When all the components of a conventional light-duty commercial vehicle are sorted by mass descending order, seats are among the first five. In addition, unlike the other components, seats are comprised of metals as well as a wide range of plastics and textiles, making them a representative test case for a general problem formulation. In this way, methodology and outcomes can be reasonably extended to the entire vehicle.
Technical Paper

Light Commercial Vehicle ADAS-Oriented Modelling: An Optimization-Based Conversion Tool from Multibody to Real-Time Vehicle Dynamics Model

2023-04-11
2023-01-0908
In the last few years, the number of Advanced Driver Assistance Systems (ADAS) on road vehicles has been increased with the aim of dramatically reducing road accidents. Therefore, the OEMs need to integrate and test these systems, to comply with the safety regulations. To lower the development cost, instead of experimental testing, many virtual simulation scenarios need to be tested for ADAS validation. The classic multibody vehicle approach, normally used to design and optimize vehicle dynamics performance, is not always suitable to cope with these new tasks; therefore, real-time lumped-parameter vehicle models implementation becomes more and more necessary. This paper aims at providing a methodology to convert experimentally validated light commercial vehicles (LCV) multibody models (MBM) into real-time lumped-parameter models (RTM).
Technical Paper

On the Road Profile Estimation from Vehicle Dynamics Measurements

2021-08-31
2021-01-1115
Ride comfort assessment is undoubtedly related to the interaction between the vehicle tires and the road surface. Indeed, the road profile represents the typical input for tire vertical load estimation in durability analysis and for active/semi-active suspension controller design. However, the road profile evaluation through direct experimental measurements involves long test time and excessive cost required by professional instrumentations to detect the road irregularities with sufficient accuracy. An alternative is shifting attention towards efficient and robust algorithms for indirect road profile evaluation. The object of this work aims at providing road profile estimation starting from vehicle dynamics measurements, through accessible and traditional sensors, with the application of a linear Kalman filter algorithm.
Technical Paper

PSD Profiles for Dynamic and Durability Tests of Military Off-Road Vehicle Racks

2023-04-11
2023-01-0107
In a military off-road vehicle, generally designed to operate in an aggressive operating environment, the typical comfort requirements for trucks and passenger cars are revised for robustness, safety and security. An example is the cabin space optimisation to provide easy access to many types of equipment required on-board. In this field, racks hung to the cabin chassis are generally used to support several electronic systems, like radios. The dynamic loads on a rack can reach high values in the operative conditions of a military vehicle. Rack failures should be prevented for the safety of driver, crew and load and the successful execution of a mission. Therefore, dynamic and durability tests of these components, including the fixtures to the vehicle, are required.
Technical Paper

Performance Evaluation of an Eco-Driving Controller for Fuel Cell Electric Trucks in Real-World Driving Conditions

2024-04-09
2024-01-2183
Range anxiety in current battery electric vehicles is a challenging problem, especially for commercial vehicles with heavy payloads. Therefore, the development of electrified propulsion systems with multiple power sources, such as fuel cells, is an active area of research. Optimal speed planning and energy management, referred to as eco-driving, can substantially reduce the energy consumption of commercial vehicles, regardless of the powertrain architecture. Eco-driving controllers can leverage look-ahead route information such as road grade, speed limits, and signalized intersections to perform velocity profile smoothing, resulting in reduced energy consumption. This study presents a comprehensive analysis of the performance of an eco-driving controller for fuel cell electric trucks in a real-world scenario, considering a route from a distribution center to the associated supermarket.
Technical Paper

Performance of Combination Particulate/Gaseous Contaminant Air Filters in the Highway and Street Traffic Environment

2007-04-16
2007-01-1425
Automotive cabin filters of the “combo” type are intended to remove both aerosols and gaseous contaminants from air entering the climate control system. We analyze the performance of two filters of this type, using published values for the concentration of gaseous contaminants found in highway and street traffic. Using existing expressions for the performance of activated carbons, including the effects of contaminant concentration, flow rate and carbon bed depth, we calculate retentivity and breakthrough time for benzene and carbon tetrachloride at street-level concentrations. The calculated factors are compared to published test data on similar filters.
Technical Paper

Road to Virtual Tuning: New Physical Lump Model and Test Protocol to Support Damper Tuning in Hyundai Motor Europe Technical Center

2019-04-02
2019-01-0855
Vehicle dynamics is a fundamental part of vehicle performance. It combines functional requirements (i.e. road safety) with emotional content (“fun to drive”, “comfort”): this balance is what characterizes the car manufacturer (OEM) driving DNA. To reach the customer requirements on Ride & Handling, integration of CAE and testing is mandatory. Beside of cutting costs and time, simulation helps to break down vehicle requirements to component level. On chassis, the damper is the most important component, contributing to define the character of the vehicle, and it is defined late, during tuning, mainly by experienced drivers. Usually 1D lookup tables Force vs. Velocity, generated from tests like the standard VDA, are not able to describe the full behavior of the damper: different dampers display the same Force vs. Velocity curve but they can give different feeling to the driver.
Technical Paper

State of the Art and Future Trends of Electrification in Agricultural Tractors

2022-09-16
2022-24-0002
Hybrid and electric powertrains are experiencing a consistent growth in the automotive field demonstrating their effectiveness in reducing pollutant emissions especially in urban areas. Recently these technologies started to be investigated in the field of work machineries as possible solution to meet increasingly stricter regulations on pollutant emissions. The construction field was the first to recognize the benefits of a partial or total electrification of a work machinery. Nowadays, the consolidation of the technology allowed for its consistent diffusion in the more conservative agricultural field where manufacturers are struggling to meet emissions regulations without losing in terms of work performance. Tractors manufacturers are the most affected actors because of the difficulty to integrate bulky gas aftertreatment systems on board of their vehicle.
Technical Paper

Steering Behavior of an Articulated Amphibious All-Terrain Tracked Vehicle

2020-04-14
2020-01-0996
This paper presents a study related to an Articulated Amphibious All-Terrain Tracked Vehicle (ATV) characterized by a modular architecture. The ATV is composed by two modules: the first one hosts mainly the vehicle engine and powertrain components, meanwhile the second one can be used for goods transportation, personnel carrier, crane and so on. The engine torque is transmitted to the front axle sprocket wheel of each module and finally distributed on the ground through a track mechanism. The two modules are connected through a multiaxial joint designed to guarantee four relative degrees of freedom. To steer the ATV, an Electro Hydraulic Power System (EHPS) is adopted, thus letting the vehicle steerable on any kind of terrain without a differential tracks speed. The paper aims to analyze the steady-state lateral behavior of the ATV on a flat road, through a non-linear mathematical vehicle model built in Matlab/Simulink environment.
X