Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

A Linear Thermal Model for an Automotive Clutch

2000-03-06
2000-01-0834
The paper presents a diaphragm spring clutch linear thermal model. The main model aim was to estimate the temperature on the clutch disc slipping surfaces. That objective was pursued through a linear model to overcome the memory and computing time problems required by models with a more complex structure. The model parameters were experimentally identified. The model was validated employing a test bench, considering shift transient different as far as energy dissipated, clutch disc wear, frequency of shifting, gearbox temperature. The model structure, the methodology adopted to identify the model parameters, the experimental results obtained are presented and discussed.
Technical Paper

A McPherson Lightweight Suspension Arm

2020-04-14
2020-01-0772
The paper deals with the design and manufacturing of a McPherson suspension arm made from short glass fiber reinforced polyamide (PA66). The design of the arm and the design of the molds have been made jointly. According to Industry 4.0 paradigms, a full digitalization of both the product and process has been performed. Since the mechanical behavior of the suspension arm strongly depends on constraints which are difficult to be modelled, a simpler structure with well-defined mechanical constraints has been developed. By means of such simple structure, the model for the behavior of the material has been validated. Since the suspension arm is a hybrid structure, the associated simple structure is hybrid as well, featuring a metal sheet with over-molded polymer. The issues referring to material flow, material to material contact, weld lines, fatigue strength, high and low temperature behavior, creep, dynamic strength have been investigated on the simple structure.
Journal Article

Artificial Intelligence for Damage Detection in Automotive Composite Parts: A Use Case

2021-04-06
2021-01-0366
The detection and evaluation of damage in composite materials components is one of the main concerns for automotive engineers. It is acknowledged that defects appeared in the manufacturing stage or due to the impact and/or fatigue loads can develop along the vehicle riding. To avoid an unexpected failure of structural components, engineers ask for cheap methodologies assessing the health state of composite parts by means of continuous monitoring. Non Destructive Technique (NDT) for the damage assessment of composite structures are nowadays common and accurate, but an on-line monitoring requires properties as low cost, small size and low power that do not belong to common NDT. The presence of a damage in composite materials, either due to fatigue cycling or low-energy impact, leads to progressive degradation of elastic moduli and strengths.
Technical Paper

CFD Analysis of Fuel Cell Humidification System for Automotive Application

2023-04-11
2023-01-0493
Fuel cells are considered one of the promising technologies as possible replacement of Internal Combustion Engine (ICE) for the transportation sector due to their high efficiency, ultra-low (or zero) emissions and for the higher drive range. The Membrane Electrode Assembly (MEA) is what mainly influences the Fuel Cell FC performance, durability, and cost. In PEMFC the proton conductivity of the membrane is a function of the humidification level of the FC membrane, hence the importance of keeping the membrane properly humidified to achieve the best possible fuel cell performance. To have the optimal water content inside the fuel cell’s membrane several strategies could be adopted, dealing with the use of external device (such as membrane humidifier) or to adopt an optimal set of parameters (gas flow rate and temperature for example) to use the water produced at fuel cell cathode as humidity source. The aim of this paper is to study the behavior of a FC vehicle humidification system.
Technical Paper

Delivery-Valve Effects on the Performance of an Automotive Diesel Fuel-Injection System

1999-03-01
1999-01-0914
An integrated theoretical and experimental investigation was carried out in order to evaluate the effects that the pump delivery-valve assembly can produce on the performance of a pump-line-nozzle fuel-injection system with a distributor-type pump for automotive diesel engines. Four distinct delivery valves, one constant-pressure valve, one reflux-hole and two relief-volume valves, were separately fitted to the pump and for each configuration of the delivery assembly the system behavior was analyzed under full-load steady-state operations in a wide pump angular-speed range. Fuel injection-rate as well as local pressure time-histories were investigated, paying specific attention to the occurrence and temporal evolution of cavitation phenomena in the pressure pipe and injector nozzle, after the valve closure. The flow across the delivery-valve assembly was theoretically examined in order to ascertain any instability sources as possible causes of cyclic fluctuations.
Technical Paper

Experimental Methodologies To Determine Diaphragm Spring Clutch Characteristics

2000-03-06
2000-01-1151
The paper presents an experimental study to investigate the relationships among diaphragm spring clutch transmitted torque, thermal phenomena during clutch engagement and clutch wear. The work describes the development of a test bench presented by the Authors in a former paper. The original techniques were developed to measure the desired magnitudes and to develop the experimental methodology to investigate the relationships. The main results were obtained considering different operating conditions, dynamics of thermal phenomena and clutch wear.
Technical Paper

Experimental Ride Comfort Analysis of an Electric Light Vehicle in Urban Scenario

2020-04-14
2020-01-1086
Urban mobility represents one of the most critical global challenges nowadays. Several options regarding design and power sources technologies were recently proposed; among which electric and hybrid vehicles are quite successful to meet the increasingly restrictive environmental targets. This significant goal may affect the perceived vehicle comfort and drivability, especially in everyday urban scenarios. The purpose of this paper is to carry out a comparison in terms of comfort between vehicles belonging to different categories, but all designed for urban mobility: an electric 2-passenger quadricycle used during the demonstration phase of the European project STEVE, an internal combustion engine 2-passenger car (Smart Fortwo), an electric 4-passenger car (Bolloré Bluecar) and an internal combustion engine 4-passenger car (Fiat 500). Leading European car-sharing services use the last three car models.
Technical Paper

Experimental-Numerical Correlation of a Multi-Body Model for Comfort Analysis of a Heavy Truck

2020-04-14
2020-01-0768
In automotive market, today more than in the past, it is very important to reduce time to market and, mostly, developing costs before the final production start. Ideally, bench and on-road tests can be replaced by multi-body studies because virtual approach guarantees test conditions very close to reality and it is able to exactly replicate the standard procedures. Therefore, today, it is essential to create very reliable models, able to forecast the vehicle behavior on every road condition (including uneven surfaces). The aim of this study is to build an accurate multi-body model of a heavy-duty truck, check its handling performance, and correlate experimental and numerical data related to comfort tests for model tuning and validation purposes. Experimental results are recorded during tests carried out at different speeds and loading conditions on a Belgian blocks track. Simulation data are obtained reproducing the on-road test conditions in multi-body environment.
Technical Paper

HYBUS: A New Hybrid Bus for Urban Public Transportation

2013-09-08
2013-24-0081
Nowadays the increasing demand for sustainable mobility has fostered the introduction of innovative propulsion systems also in the public transport sector in order to achieve a significant reduction of pollutant emissions in highly congested urban areas. Within this context this paper describes the development of the HYBUS, an environmental friendly hybrid bus for on-road urban transportation, which was jointly carried out by Pininfarina and Politecnico di Torino in the framework of the AMPERE project. The first prototype of the bus was built by integrating an innovative hybrid propulsion system featuring a plug-in series architecture into the chassis of an old IVECO 490 TURBOCITY. The bus is 12 meters long and has a capacity of up to 116 passengers in the original layout. The project relied on a modular approach where the powertrain could be easily customized for size and power depending on the specific application.
Journal Article

Hardware and Virtual Test-Rigs for Automotive Steel Wheels Design

2020-04-14
2020-01-1231
The aim of this paper is to study in deep the peculiar test-rigs and experimental procedures adopted to the fulfilment of the principal requirements of automotive steel wheels, in particular regarding fatigue damaging. In the discussion, the standard requirements, the OEM specifications and the dimensional and geometric tolerances are approached. As result of an increasingly necessity to improve the performance of the components, innovative virtual test benches are presented. Differently from their traditional precursors, virtual test-rigs give an extended view of the physical behaviour of the component as the possibility to monitor stress-strain distribution in deep. In the first section, the state of the art and the specifications are listed. Secondly, the adopted hardware test-rigs as the experimental tests are described in detail. In the third one, proposed virtual test-rig is discussed.
Journal Article

Impact on Performance, Emissions and Thermal Behavior of a New Integrated Exhaust Manifold Cylinder Head Euro 6 Diesel Engine

2013-09-08
2013-24-0128
The integration of the exhaust manifold in the engine cylinder head has received considerable attention in recent years for automotive gasoline engines, due to the proven benefits in: engine weight diminution, cost saving, reduced power enrichment, quicker engine and aftertreatment warm-up, improved packaging and simplification of the turbocharger installation. This design practice is still largely unknown in diesel engines because of the greater difficulties, caused by the more complex cylinder head layout, and the expected lower benefits, due to the absence of high-load enrichment. However, the need for improved engine thermomanagement and a quicker catalytic converter warm-up in efficient Euro 6 diesel engines is posing new challenges that an integrated exhaust manifold architecture could effectively address. A recently developed General Motors 1.6L Euro 6 diesel engine has been modified so that the intake and exhaust manifolds are integrated in the cylinder head.
Journal Article

Lightweight Components Manufactured with In-Production Composite Scraps: Mechanical Properties and Application Perspectives

2022-06-14
2022-37-0027
In the last years, the design in the automotive sector is mainly led by emission reduction and circular economy. To satisfy the first perspective, composites materials are being increasingly used to produce lightweight structural and semi-structural components. However, the automotive mass production arises the problem of the end-of-life disposal of the vehicle and the reduction of the wastes environmental impact. The circular economy of the composite materials has therefore become a challenge of primary importance for car manufacturers and tier 1 suppliers. It is necessary to pursue a different economic model, combining traditional raw materials with the intensive use of materials from recycling processes. New technologies are being studied and developed concerning the reuse of in-line production scraps with out-of-autoclave process that makes them desirable for high production rate applications.
Technical Paper

On the Road Profile Estimation from Vehicle Dynamics Measurements

2021-08-31
2021-01-1115
Ride comfort assessment is undoubtedly related to the interaction between the vehicle tires and the road surface. Indeed, the road profile represents the typical input for tire vertical load estimation in durability analysis and for active/semi-active suspension controller design. However, the road profile evaluation through direct experimental measurements involves long test time and excessive cost required by professional instrumentations to detect the road irregularities with sufficient accuracy. An alternative is shifting attention towards efficient and robust algorithms for indirect road profile evaluation. The object of this work aims at providing road profile estimation starting from vehicle dynamics measurements, through accessible and traditional sensors, with the application of a linear Kalman filter algorithm.
Technical Paper

Pem Fuel Cell Performance Under Particular Operating Conditions Causing the Production of Liquid Water: A Morphing on Bipolar Plate's Channels Approach

2011-04-12
2011-01-1349
A fuel-cell-based system's performance is mainly identified in the overall efficiency, strongly depending on the amount of power losses due to auxiliary devices to supply. In such a situation, everything that causes either a decrease of the available power output or an increment of auxiliary losses would determine a sensible overall efficiency reduction.
Technical Paper

Performance of Combination Particulate/Gaseous Contaminant Air Filters in the Highway and Street Traffic Environment

2007-04-16
2007-01-1425
Automotive cabin filters of the “combo” type are intended to remove both aerosols and gaseous contaminants from air entering the climate control system. We analyze the performance of two filters of this type, using published values for the concentration of gaseous contaminants found in highway and street traffic. Using existing expressions for the performance of activated carbons, including the effects of contaminant concentration, flow rate and carbon bed depth, we calculate retentivity and breakthrough time for benzene and carbon tetrachloride at street-level concentrations. The calculated factors are compared to published test data on similar filters.
Technical Paper

Road to Virtual Tuning: New Physical Lump Model and Test Protocol to Support Damper Tuning in Hyundai Motor Europe Technical Center

2019-04-02
2019-01-0855
Vehicle dynamics is a fundamental part of vehicle performance. It combines functional requirements (i.e. road safety) with emotional content (“fun to drive”, “comfort”): this balance is what characterizes the car manufacturer (OEM) driving DNA. To reach the customer requirements on Ride & Handling, integration of CAE and testing is mandatory. Beside of cutting costs and time, simulation helps to break down vehicle requirements to component level. On chassis, the damper is the most important component, contributing to define the character of the vehicle, and it is defined late, during tuning, mainly by experienced drivers. Usually 1D lookup tables Force vs. Velocity, generated from tests like the standard VDA, are not able to describe the full behavior of the damper: different dampers display the same Force vs. Velocity curve but they can give different feeling to the driver.
X