Refine Your Search

Topic

Author

Search Results

Technical Paper

3DOF Vehicle Dynamics Model for Fuel Consumption Estimation

2024-04-09
2024-01-2757
The dynamic model is built in Siemens Simcenter Amesim platform and simulates the performances on track of JUNO, a low energy demanding Urban Concept vehicle to take part in the Shell Eco-Marathon competition, in which the goal is to achieve the lowest fuel consumption in covering some laps of a racetrack, with limitations on the maximum race time. The model starts with the longitudinal dynamics, analysing all the factors that characterize the vehicle’s forward resistance, like aerodynamic forces, altimetry changes and rolling resistance. To improve the correlation between simulation and track performances, the model has been updated with the implementation of a Single-Track Model, including vehicle rotation around its roll axis, and a 3D representation of the racetrack, with an automatic trajectory following control implemented. This is crucial to characterise the vehicle’s lateral dynamics, which cannot be neglected in simulating its performances on track.
Technical Paper

A Linear Thermal Model for an Automotive Clutch

2000-03-06
2000-01-0834
The paper presents a diaphragm spring clutch linear thermal model. The main model aim was to estimate the temperature on the clutch disc slipping surfaces. That objective was pursued through a linear model to overcome the memory and computing time problems required by models with a more complex structure. The model parameters were experimentally identified. The model was validated employing a test bench, considering shift transient different as far as energy dissipated, clutch disc wear, frequency of shifting, gearbox temperature. The model structure, the methodology adopted to identify the model parameters, the experimental results obtained are presented and discussed.
Technical Paper

A McPherson Lightweight Suspension Arm

2020-04-14
2020-01-0772
The paper deals with the design and manufacturing of a McPherson suspension arm made from short glass fiber reinforced polyamide (PA66). The design of the arm and the design of the molds have been made jointly. According to Industry 4.0 paradigms, a full digitalization of both the product and process has been performed. Since the mechanical behavior of the suspension arm strongly depends on constraints which are difficult to be modelled, a simpler structure with well-defined mechanical constraints has been developed. By means of such simple structure, the model for the behavior of the material has been validated. Since the suspension arm is a hybrid structure, the associated simple structure is hybrid as well, featuring a metal sheet with over-molded polymer. The issues referring to material flow, material to material contact, weld lines, fatigue strength, high and low temperature behavior, creep, dynamic strength have been investigated on the simple structure.
Technical Paper

A Methodology to Investigate the Dynamic Characteristics of ESP and EHB Hydraulic Units

2006-04-03
2006-01-1281
The paper deals with the Hardware-In-the-Loop based methodology which was adopted to evaluate the dynamic characteristics of Electronic Stability Program (ESP) and Electro-Hydraulic Brake (EHB) components. Firstly, it permits the identification of the time delays due to the hardware of the actuation system. Secondly, the link between the hardware of the hydraulic unit and a vehicle model running in real time permits the objective evaluation of the performance induced by the single components of different hydraulic units in terms of vehicle dynamics. The paper suggests the main parameters and tests which can help the car manufacturer in evaluating ESP hydraulic units, without expensive road tests.
Technical Paper

A Modal-Geometrical Selection Criterion for Master Nodes Applied to Engine Components

2011-04-12
2011-01-0498
Usually, both an experimental modal analysis or a numerical modal analysis performed on reduced model present the problem of master nodes selection. A methodology based on the experience is normally used or computationally heavy criterion can be applied. In that paper, the Modal-Geometrical Selection Criterion (MoGeSeC) is applied to a crankshaft, both for an EMA (experimental modal analysis) and for a reduction procedure. Then the results are compared with other literature criteria. As far as the EMA is concerned, the nodes suggested by MoGeSeC and other criteria are used for identification of the component. The connection conditions between components are origin of uncertainty but in that case the comparison is done for each methodology in the same conditions. In that way MoGeSeC proves to be a very quick and accurate method because the nodes it selects depicts very well the dynamic behavior of the components.
Journal Article

A New Approach for the Estimation of the Aerodynamic Damping Characteristics of the ETF Demonstrator

2011-10-18
2011-01-2649
Nautilus S.p.A. and the Polytechnic of Turin, in cooperation with Blue Engineering, have developed a very versatile product, the ELETTRA Twin Flyers [6] (ETF), which consists in a very innovative remotely-piloted airship equipped with high precision sensors and communication devices. This multipurpose platform is particularly suitable for border and maritime surveillance missions and for telecommunication, both in military and civil area. To assess the actual maneuver capabilities of the airship [14], a prototype of reduced size and complexity has been assembled [16]. Before the flight tests a further assessment on the flight simulator is needed, because the first version of the software is tuned on the full scale prototype. Steady state performance and static stability of the demonstrator have been evaluated with CFD analysis.
Technical Paper

A New Test Bench for HWA Fluid-Dynamic Characterization of a Two-Valved In-Piston-Bowl Production Engine

1995-10-01
952467
A new test bench has been set up and equipped in order to analyze the air mean motion and turbulence quantities in the combustion system of an automotive diesel engine with one helicoidal intake duct and a conical type in-piston bowl. A sophisticated HWA technique employing single- and dual-sensor probes was applied to the in-cylinder flow investigation under motored conditions. The anemometric probe was also operated as a thermometric sensor. An analytical-numerical procedure, based on the heat balance equations for both anemometric and thermometric wires, was refined and applied to compute the gas velocity from the anemometer output signal. The gas property influence, the thermometric sensor lag and the prong temperature effects were taken into account with this procedure. The in-cylinder velocity data were reduced using both a cycle-resolved approach and the conventional ensemble-averaging procedure, in order to separate the mean flow from the fluctuating motion.
Technical Paper

A PEM Fuel Cell Distributed Parameters Model Aiming at Studying the Production of Liquid Water Within the Cell During its Normal Operation: Model Description, Implementation and Validation

2011-04-12
2011-01-1176
One of the major issues coming out from low temperature fuel cells concerns the production of water vapor as a chemical reaction (between hydrogen and oxygen) by-product and its consequent condensation (at certain operating conditions), determining the presence of an amount of liquid water affecting the performance of the fuel cell stack: the production and the quantity of liquid water are strictly influenced by boundaries and power output conditions. Starting from this point, this work focuses on collecting all the required information available in literature and defining a suitable CFD model able to predict the production of liquid water within the fuel cell, while at the same time localizing it and determining the consequences on the PEM cell performances.
Technical Paper

A PEM Fuel Cell Laminar and Turbulent Models Comparison, Aiming at Identifying Small-Scale Plate Channel Phenomena: A Mesh Independent Configuration

2011-04-12
2011-01-1177
Computational Fluid Dynamics is a powerful instrument for PEM fuel cell systems development, testing and optimization. Considering the complication due to the multiple physical phenomena involved in the cell's operations, a good understanding of the micro-scale fluidic behavior in boundary layers is recommended: pressure drop along the reactants gas channels and the cooling channels has a sensible effect on parasite load in fuel cell systems (i.e. the power absorbed by the pump supplying the gases), as well as an important role in thermal transport. A correct thermal and fluid dynamic boundary layer prediction on the channel walls and the other contact surface with porous layers requires usually a dense finite element volumes discretization near wall, especially if laminar flows occur: therefore, the boundary layer computational cost tends to be the major one.
Technical Paper

A Possible Adaptive Wing Apparatus for New UAV Configurations

2015-09-15
2015-01-2463
The problem of wing shape modification under loads in order to enhance the aircraft performance and control is continuously improving by researchers. This requirement is in contrast to the airworthiness regulations that constraint stiffness and stress of the structure in order to maintain structural integrity under operative flight conditions. The lifting surface modification is more stringent in those cases, such as UAV configurations, where the installed power is limited but the variety of operative scenario is wider than in conventional aircraft. A possible solution for adaptive wing configuration can be found in the VENTURAS Project idea. The VENTURAS Project is a funded project with the aim of improve the wind turbine efficiency by means of introducing a twisting capability for the blade sections according to the best situation in any wind condition. The blade structure is composed by two parts: 1) internal supporting element, 2) external deformable envelope.
Technical Paper

Aerodynamics' Influence on Performance in Human-Powered Vehicles for Sustainable Transportation

2024-06-12
2024-37-0028
The issue of greenhouse gas (GHG) emissions from the transportation sector is widely acknowledged. Recent years have witnessed a push towards the electrification of cars, with many considering it the optimal solution to address this problem. However, the substantial battery packs utilized in electric vehicles contribute to a considerable embedded ecological footprint. Research has highlighted that, depending on the vehicle's size, tens or even hundreds of thousands of kilometers are required to offset this environmental burden. Human-powered vehicles (HPVs), thanks to their smaller size, are inherently much cleaner means of transportation, yet their limited speed impedes widespread adoption for mid-range and long-range trips, favoring cars, especially in rural areas. This paper addresses the challenge of HPV speed, limited by their low input power and non-optimal distribution of the resistive forces.
Technical Paper

Application of Adjoint Methods on Drag Reduction of Current Production Cars

2018-05-30
2018-37-0016
Automotive manufacturers are facing stronger and stronger pressure to optimize all aspects related to fuel consumption of cars, and aerodynamic drag makes no exception, due to increasing government enforcing rules for the reduction of the emissions and the increasing influence of aerodynamic performance on fuel consumption with WLTC and RDE driving cycles. Nowadays, CFD simulation is a common tool across automotive industries for the assessment and the optimization of vehicle resistance in the design phase. The full power of these numerical methods of studying many design variants in advance of experimental testing, however, can be fully exploited when coupled with optimization techniques, always keeping into account constraints and aesthetical demands. On the other hand, a massive use of CFD optimization can lead to unaffordable computational efforts or a limitation of the design exploration space.
Technical Paper

Application of Genetic Algorithm for the Calibration of the Kinetic Scheme of a Diesel Oxidation Catalyst Model

2018-09-10
2018-01-1762
In this work, a methodology for building and calibrating the kinetic scheme for the 1D CFD model of a zone-coated automotive Diesel Oxidation Catalyst (DOC) by means of a Genetic Algorithm (GA) approach is presented. The methodology consists of a preliminary experimental activity followed by a modelling, optimization and validation process. The tested aftertreatment component presents zone coating, with the front brick side covered with Zeolites in order to ensure hydrocarbons trapping at low temperature, and Platinum Group Metal (PGM), while the rear brick side presents an alumina washcoat with a different PGM loading. Reactor scale samples representative of each coating zone were tested on a Synthetic Gas Bench (SGB), to fully characterize the component’s behavior in terms of Light-off and hydrocarbons (HC) storage for a wide range of inlet feed compositions and temperatures, representative of engine-out conditions.
Journal Article

Artificial Intelligence for Damage Detection in Automotive Composite Parts: A Use Case

2021-04-06
2021-01-0366
The detection and evaluation of damage in composite materials components is one of the main concerns for automotive engineers. It is acknowledged that defects appeared in the manufacturing stage or due to the impact and/or fatigue loads can develop along the vehicle riding. To avoid an unexpected failure of structural components, engineers ask for cheap methodologies assessing the health state of composite parts by means of continuous monitoring. Non Destructive Technique (NDT) for the damage assessment of composite structures are nowadays common and accurate, but an on-line monitoring requires properties as low cost, small size and low power that do not belong to common NDT. The presence of a damage in composite materials, either due to fatigue cycling or low-energy impact, leads to progressive degradation of elastic moduli and strengths.
Technical Paper

CFD Analysis of Fuel Cell Humidification System for Automotive Application

2023-04-11
2023-01-0493
Fuel cells are considered one of the promising technologies as possible replacement of Internal Combustion Engine (ICE) for the transportation sector due to their high efficiency, ultra-low (or zero) emissions and for the higher drive range. The Membrane Electrode Assembly (MEA) is what mainly influences the Fuel Cell FC performance, durability, and cost. In PEMFC the proton conductivity of the membrane is a function of the humidification level of the FC membrane, hence the importance of keeping the membrane properly humidified to achieve the best possible fuel cell performance. To have the optimal water content inside the fuel cell’s membrane several strategies could be adopted, dealing with the use of external device (such as membrane humidifier) or to adopt an optimal set of parameters (gas flow rate and temperature for example) to use the water produced at fuel cell cathode as humidity source. The aim of this paper is to study the behavior of a FC vehicle humidification system.
Technical Paper

Calculating Heavy-Duty Truck Energy and Fuel Consumption Using Correlation Formulas Derived From VECTO Simulations

2019-04-02
2019-01-1278
The Vehicle Energy Consumption calculation Tool (VECTO) is used in Europe for calculating standardised energy consumption and CO2 emissions from Heavy-Duty Trucks (HDTs) for certification purposes. The tool requires detailed vehicle technical specifications and a series of component efficiency maps, which are difficult to retrieve for those that are outside of the manufacturing industry. In the context of quantifying HDT CO2 emissions, the Joint Research Centre (JRC) of the European Commission received VECTO simulation data of the 2016 vehicle fleet from the vehicle manufacturers. In previous work, this simulation data has been normalised to compensate for differences and issues in the quality of the input data used to run the simulations. This work, which is a continuation of the previous exercise, focuses on the deeper meaning of the data received to understand the factors contributing to energy and fuel consumption.
Technical Paper

Catalytic Activity of Nanostructured Ceria-Based Materials Prepared by Different Synthesis Conditions

2017-09-04
2017-24-0145
In this work, several nanostructured ceria-based catalysts were prepared by the hydrothermal technique varying two synthesis parameters (namely, temperature and pH). Then, cerias with different shapes (i.e., cubes, rods, combination of them, other polyhedra) and structural properties were obtained. The prepared materials were tested for the CO oxidation and soot oxidation efficiency. The results have shown that, for the CO oxidation, activities depend on the surface properties of the catalysts. Conversely, for the soot oxidation, the most effective catalysts exhibit better soot-catalyst contact conditions.
Technical Paper

Common Rail without Accumulator: Development, Theoretical-Experimental Analysis and Performance Enhancement at DI-HCCI Level of a New Generation FIS

2007-04-16
2007-01-1258
An innovative hydraulic layout for Common Rail (C.R.) fuel injection systems was proposed and realized. The rail was replaced by a high-pressure pipe junction to have faster dynamic system response during engine transients, smaller pressure induced stresses and sensibly reduced production costs. Compared to a commercial rail, whose inside volume ranges from 20 to 40 cm3, such a junction provided a hydraulic capacitance of about 2 cm3 and had the main function of connecting the pump delivery to the electroinjector feeding pipes. In the design of the novel FIS layout, the choice of high-pressure pipe dimensions was critical for system performance optimization. Injector supplying pipes with length and inner diameter out of the actual production range were selected and applied, for stabilizing the system pressure level during an injection event and reduce pressure wave oscillations.
Technical Paper

Design the City Vehicle XAM using CFD Analysis

2015-04-14
2015-01-1533
XAM is a two-seat city vehicle prototype developed at the Politecnico di Torino, equipped with a hybrid propulsion system to obtain low consumptions and reduced environmental impact. The design of this vehicle was guided by the requirements of weight reduction and aerodynamic optimization of the body, aimed at obtaining a reduction of resistance while guarantying roominess. The basic shape of the vehicle corresponding to the requirements of style, ergonomics and structure were deeply studied through CFD simulation in order to assess its aerodynamic performance (considering the vehicle as a whole or the influence of the various details and of their changes separately). The most critical areas of the body (underfloor, tail, spoiler, mirrors, A-pillar) were analyzed creating dedicated refinement volumes.
Technical Paper

Development of an Improved Fractal Model for the Simulation of Turbulent Flame Propagation in SI Engines

2005-09-11
2005-24-082
The necessity for further reductions of in-cylinder pollutant formation and the opportunity to minimize engine development and testing times highlight the need of engine thermodynamic cycle simulation tools that are able to accurately predict the effects of fuel, design and operating variables on engine performance. In order to set up reliable codes for indicated cycle simulation in SI engines, an accurate prediction of heat release is required, which, in turn, involves the evaluation of in-cylinder turbulence generation and flame-turbulence interaction. This is generally pursued by the application of a combustion fractal model coupled with semi-empirical correlations of available geometrical and thermodynamical mass-averaged quantities. However, the currently available correlations generally show an unsatisfactory capability to predict the effects of flame-turbulence interaction on burning speed under the overall flame propagation interval.
X