Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Contribution to Engine and Vehicle Performance Prediction

2000-03-06
2000-01-1266
The application of computational methods for the development of the whole engine-vehicle system has been evaluated in this paper, to highlight the potential of computer simulation techniques applied to the analysis of engine-vehicle matching. First, engine performance was simulated using a one-dimensional fluid dynamic code, and predicted data were compared to experimental results, to assess the accuracy of the engine computer model not only as far as gross engine performance parameters are concerned, but also for the prediction of pressure values at several locations inside the engine. The simulation was also extended to the whole engine operating range, including part-load operating conditions. Afterwards, a vehicle simulation code was employed, to predict vehicle performance and fuel consumption.
Technical Paper

A Deep Learning based Virtual Sensor for Vehicle Sideslip Angle Estimation: Experimental Results

2018-04-03
2018-01-1089
Modern vehicles have several active systems on board such as the Electronic Stability Control. Many of these systems require knowledge of vehicle states such as sideslip angle and yaw rate for feedback control. Sideslip angle cannot be measured with the standard sensors present in a vehicle, but it can be measured by very expensive and large optical sensors. As a result, state observers have been used to estimate sideslip angle of vehicles. The current state of the art does not present an algorithm which can robustly estimate the sideslip angle for vehicles with all-wheel drive. A deep learning network based sideslip angle observer is presented in this article for robust estimation of vehicle sideslip angle. The observer takes in the inputs from all the on board sensors present in a vehicle and it gives out an estimate of the sideslip angle. The observer is tested extensively using data which are obtained from proving grounds in high tire-road friction coefficient conditions.
Technical Paper

A Fully Physical Correlation for Low Pressure EGR Control Linearization

2017-09-04
2017-24-0011
Nowadays stringent emission regulations are pushing towards new air management strategies like LP-EGR and HP/LP mix both for passenger car and heavy duty applications, increasing the engine control complexity. Within a project in collaboration between Kohler Engines EMEA, Politecnico di Torino, Ricardo and Denso to exploit the potential of EGR-Only technologies, a 3.4 liters KDI 3404 was equipped with a two stage turbocharging system, an extremely high pressure FIS and a low pressure EGR system. The LP-EGR system works in a closed loop control with an intake oxygen sensor actuating two valves: an EGR valve placed downstream of the EGR cooler that regulates the flow area of the bypass between the exhaust line and the intake line, and an exhaust flap to generate enough backpressure to recirculate the needed EGR rate to cut the NOx emission without a specific aftertreatment device.
Technical Paper

A Methodology for Modeling the Cat-Heating Transient Phase in a Turbocharged Direct Injection Spark Ignition Engine

2017-09-04
2017-24-0010
This paper presents the modeling of the transient phase of catalyst heating on a high-performance turbocharged spark ignition engine with the aim to accurately predict the exhaust thermal energy available at the catalyst inlet and to provide a “virtual test rig” to assess different design and calibration options. The entire transient phase, starting from the engine cranking until the catalyst warm-up is completed, was taken into account in the simulation, and the model was validated using a wide data-set of experimental tests. The first step of the modeling activity was the combustion analysis during the transient phase: the burn rate was evaluated on the basis of experimental in-cylinder pressure data, considering both cycle-to-cycle and cylinder-to-cylinder variations.
Technical Paper

A Methodology for Parameter Estimation of Nonlinear Single Track Models from Multibody Full Vehicle Simulation

2021-04-06
2021-01-0336
In vehicle dynamics, simple and fast vehicle models are required, especially in the framework of real-time simulations and autonomous driving software. Therefore, a trade-off between accuracy and simulation speed must be pursued by selecting the appropriate level of detail and the corresponding simplifying assumptions based on the specific purpose of the simulation. The aim of this study is to develop a methodology for map and parameter estimation from multibody simulation results, to be used for simplified vehicle modelling focused on handling performance. In this paper, maneuvers, algorithms and results of the parameter estimation are reported, together with their integration in single track models with increasing complexity and fidelity. The agreement between the multibody model, used as reference, and four single track models is analyzed and discussed through the evaluation of the correlation index.
Technical Paper

A Methodology to Investigate the Dynamic Characteristics of ESP and EHB Hydraulic Units

2006-04-03
2006-01-1281
The paper deals with the Hardware-In-the-Loop based methodology which was adopted to evaluate the dynamic characteristics of Electronic Stability Program (ESP) and Electro-Hydraulic Brake (EHB) components. Firstly, it permits the identification of the time delays due to the hardware of the actuation system. Secondly, the link between the hardware of the hydraulic unit and a vehicle model running in real time permits the objective evaluation of the performance induced by the single components of different hydraulic units in terms of vehicle dynamics. The paper suggests the main parameters and tests which can help the car manufacturer in evaluating ESP hydraulic units, without expensive road tests.
Technical Paper

A Methodology to Mimic Cycle to Cycle Variations and to Predict Knock Occurrence through Numerical Simulation

2014-04-01
2014-01-1070
In this paper a novel approach to mimic through numerical simulation Cycle-to-Cycle Variations (CCV) of the combustion process of Spark Ignition (SI) engines is described. The proposed methodology allows to reproduce the variability in combustion which is responsible for knock occurrence and thus to replicate the stochastic behavior of this abnormal combustion phenomenon. On the basis of the analysis of a comprehensive database of experimental data collected on a typical European downsized and turbocharged SI engine, the proposed approach was demonstrated to be capable to replicate in the simulation process the same percentage of knocking cycles experimentally measured in light-knock conditions, after a proper calibration of the Kinetics-Fit (KF), a new phenomenological knock model which was recently developed by Gamma Technologies.
Journal Article

A New Approach for the Estimation of the Aerodynamic Damping Characteristics of the ETF Demonstrator

2011-10-18
2011-01-2649
Nautilus S.p.A. and the Polytechnic of Turin, in cooperation with Blue Engineering, have developed a very versatile product, the ELETTRA Twin Flyers [6] (ETF), which consists in a very innovative remotely-piloted airship equipped with high precision sensors and communication devices. This multipurpose platform is particularly suitable for border and maritime surveillance missions and for telecommunication, both in military and civil area. To assess the actual maneuver capabilities of the airship [14], a prototype of reduced size and complexity has been assembled [16]. Before the flight tests a further assessment on the flight simulator is needed, because the first version of the software is tuned on the full scale prototype. Steady state performance and static stability of the demonstrator have been evaluated with CFD analysis.
Technical Paper

A Numerical Analysis of Terrain and Vehicle Characteristics in Off-Road Conditions through Semi-Empirical Tire Contact Modelling

2024-04-09
2024-01-2297
In the last decades, the locomotion of wheeled and tracked vehicles on soft soils has been widely investigated due to the large interest in planetary, agricultural, and military applications. The development of a tire-soft soil contact model which accurately represents the micro and macro-scale interactions plays a crucial role for the performance assessment in off-road conditions since vehicle traction and handling are strongly influenced by the soil characteristics. In this framework, the analysis of realistic operative conditions turns out to be a challenging research target. In this research work, a semi-empirical model describing the interaction between a tire and homogeneous and fine-grained soils is developed in Matlab/Simulink. The stress distribution and the resulting forces at the contact patch are based on well-known terramechanics theories, such as pressure-sinkage Bekker’s approach and Mohr-Coulomb’s failure criterion.
Technical Paper

A Numerical Model for the Virtual Calibration of a Highly Efficient Spark Ignition Engine

2023-09-29
2023-32-0059
Nowadays numerical simulations play a major role in the development of future sustainable powertrain thanks to their capability of investigating a wide spectrum of innovative technologies with times and costs significantly lower than a campaign of experimental tests. In such a framework, this paper aims to assess the predictive capabilities of an 1D-CFD engine model developed to support the design and the calibration of the innovative highly efficient spark ignition engine of the PHOENICE (PHev towards zerO EmissioNs & ultimate ICE efficiency) EU H2020 project. As a matter of fact, the availability of a reliable simulation platform is crucial to achieve the project target of 47% peak indicating efficiency, by synergistically exploiting the combination of innovative in-cylinder charge motion, Miller cycle with high compression ratio, lean mixture with cooled Exhaust Gas Recirculation (EGR) and electrified turbocharger.
Technical Paper

A Proposal of an Oil Pan Optimization Methodology

2010-04-12
2010-01-0417
In the powertrain technology, designers must be careful on oil pan design in order to obtain the best noise, vibration and harshness (NVH) performance. This is a great issue for the automotive design because they affect the passengers' comfort. In order to reduce vibration and radiated noise in powertrain assembly, oil pan is one of the most critical components. The high stiffness of the oil pan permits to move up the natural modes of the component and, as a consequence, reduce the sound emission of the component itself. In addition, the optimized shape of the component allows the increase of natural frequency values of the engine assembly. The aim of this study is the development of a methodology to increase the oil pan stiffness starting from a sketch of the component and adding material where it is needed. The methodology is tested on a series of different models: they have the same geometry but different materials.
Technical Paper

A Rack-like Facility Prototype for Ground Demonstration of a LSS Based on Plants

2009-07-12
2009-01-2582
In the frame of the space food production research activities conducted in the Thales Alenia Space Italia (TAS-I) Advanced Life Support Research and Development laboratory (RecycLAB, [6]), and with the contribution of a degree thesis developed in collaboration with the Politecnico of Torino, a rack-like facility for ground research on Life Support Systems based on Plants has been designed, developed, integrated, verified and tested in TAS-I. The new facility, called EDEN EPISODE 2, is a significant evolution of a previous TAS-I project (EDEN EPISODE 1) and takes benefit from other lower size TAS-I demonstrators (CUBE). It aims at realizing a completely closed and controlled environment for crop production, while a mobile lighting panel allows to maximize the delivered light in each phase of the plant life cycle. Hydroponic and aeroponic techniques have been implemented in the project for nutrient delivery to the plant roots.
Journal Article

Active Tire Pressure Control (ATPC) for Passenger Cars: Design, Performance, and Analysis of the Potential Fuel Economy Improvement

2018-04-03
2018-01-1340
Active tire pressure control (ATPC) is an automatic central tire inflation system (CTIS), designed, prototyped, and tested at the Politecnico di Torino, which is aimed at improving the fuel consumption, safety, and drivability of passenger vehicles. The pneumatic layout of the system and the designed solution for on board integration are presented. The critical design choices are explained in detail and supported by experimental evidence. In particular, the results of experimental tests, including the characterizations of various pneumatic components in working conditions, have been exploited to obtain a design, which allows reliable performance of the system in a lightweight solution. The complete system has been tested to verify its dynamics, in terms of actuation time needed to obtain a desired pressure variation, starting from the current tire pressure, and to validate the design.
Technical Paper

Aerodynamics' Influence on Performance in Human-Powered Vehicles for Sustainable Transportation

2024-06-12
2024-37-0028
The issue of greenhouse gas (GHG) emissions from the transportation sector is widely acknowledged. Recent years have witnessed a push towards the electrification of cars, with many considering it the optimal solution to address this problem. However, the substantial battery packs utilized in electric vehicles contribute to a considerable embedded ecological footprint. Research has highlighted that, depending on the vehicle's size, tens or even hundreds of thousands of kilometers are required to offset this environmental burden. Human-powered vehicles (HPVs), thanks to their smaller size, are inherently much cleaner means of transportation, yet their limited speed impedes widespread adoption for mid-range and long-range trips, favoring cars, especially in rural areas. This paper addresses the challenge of HPV speed, limited by their low input power and non-optimal distribution of the resistive forces.
Technical Paper

An Engine Parameters Sensitivity Analysis on Ducted Fuel Injection in Constant-Volume Vessel Using Numerical Modeling

2021-09-05
2021-24-0015
The use of Ducted Fuel Injection (DFI) for attenuating soot formation throughout mixing-controlled diesel combustion has been demonstrated impressively effective both experimentally and numerically. However, the last research studies have highlighted the need for tailored engine calibration and duct geometry optimization for the full exploitation of the technology potential. Nevertheless, the research gap on the response of DFI combustion to the main engine operating parameters has still to be fully covered. Previous research analysis has been focused on numerical soot-targeted duct geometry optimization in constant-volume vessel conditions. Starting from the optimized duct design, the herein study aims to analyze the influence of several engine operating parameters (i.e. rail pressure, air density, oxygen concentration) on DFI combustion, having free spray results as a reference.
Technical Paper

An Integrated Methodology for 0D Map-Based Powertrain Modelling Applied to a 48 V Mild-Hybrid Diesel Passenger Car

2018-09-10
2018-01-1659
Nowadays, the 48 V vehicle architecture seems to be the perfect bridge between the 12 V system and the costly High Voltage (HV) electrification towards the crucial goal of CO2 and pollutants emissions reduction in combination with enhanced performance. However, this approach leads to an increased complexity in the interaction between different sub-systems targeting the optimization of the Energy Management System (EMS). Therefore, it becomes essential to perform a preliminary hardware assessment, exploring the interactions between the different components and quantifying the cost vs benefit trade-off. To this purpose, an integrated experimental/numerical methodology has been adopted: a comprehensive map-based Hybrid Electric Vehicle (HEV) model has been built, allowing the simulation of a variety of hybrid architectures, including both HV and 48 V systems.
Technical Paper

Application of Adjoint Methods on Drag Reduction of Current Production Cars

2018-05-30
2018-37-0016
Automotive manufacturers are facing stronger and stronger pressure to optimize all aspects related to fuel consumption of cars, and aerodynamic drag makes no exception, due to increasing government enforcing rules for the reduction of the emissions and the increasing influence of aerodynamic performance on fuel consumption with WLTC and RDE driving cycles. Nowadays, CFD simulation is a common tool across automotive industries for the assessment and the optimization of vehicle resistance in the design phase. The full power of these numerical methods of studying many design variants in advance of experimental testing, however, can be fully exploited when coupled with optimization techniques, always keeping into account constraints and aesthetical demands. On the other hand, a massive use of CFD optimization can lead to unaffordable computational efforts or a limitation of the design exploration space.
Technical Paper

Application of a CFD Methodology for the Design of PEM Fuel Cell at the Channel Scale

2024-04-09
2024-01-2186
Polymer electrolyte membrane (PEM) fuel cells will play a crucial role in the decarbonization of the transport sector, in particular for heavy duty applications. However, performance and durability of PEMFC stacks is still a concern especially when operated under high power density conditions, as required in order to improve the compactness and to reduce the cost of the system. In this context, the optimization of the geometry of hydrogen and air distributors represents a key factor to improve the distribution of the reactants on the active surface, in order to guarantee a proper water management and avoiding membrane dehydration.
Technical Paper

Assessment of the Predictive Capabilities of a Combustion Model for a Modern Common Rail Automotive Diesel Engine

2016-04-05
2016-01-0547
The predictive capabilities of an innovative multizone combustion model DIPulse, developed by Gamma Technologies, were assessed in this work for a last generation common rail automotive diesel engine. A detailed validation process, based on an extensive experimental data set, was carried out concerning the predicted heat release rate, the in-cylinder pressure trace, as well as NOx and soot emissions for several operating points including both part load and full load points. After a preliminary calibration of the model, the combustion model parameters were then optimized through a Latin Hypercube Design of Experiment (DoE), with the aim of minimizing the RMS error between the predicted and experimental burn rate of several engine operating points, thus achieving a satisfactory agreement between simulation and experimental engine combustion and emissions parameters.
Technical Paper

Assessment of the Predictive Capabilities of a Combustion Model for a Modern Downsized Turbocharged SI Engine

2016-04-05
2016-01-0557
A 0D phenomenological turbulence model, based on the K-k and k- ɛ approaches, was coupled with a predictive turbulent combustion model using the commercial code GT-Suite, and its predictive capabilities were assessed for a downsized turbocharged SI engine. Differently from the 3D-CFD approach which is typically utilized to describe the evolution of the in-cylinder flow field, and which has very high computational requirements, the 0D phenomenological approach adopted in this work gives the opportunity to predict the evolution of the in-cylinder charge motion and the subsequent combustion process by means of a turbulent combustion model, with a significantly reduced computational effort, thus paving the way for the simulation of the whole engine operating map.
X