Refine Your Search

Topic

Author

Search Results

Journal Article

A Fuel Cell Based Propulsion System for General Aviation Aircraft: The ENFICA-FC Experience

2011-10-18
2011-01-2522
The hydrogen and fuel cell power based technologies that are rapidly emerging can be exploited to start a new generation of propulsion systems for light aircraft and small commuter aircraft. Different studies were undertaken in recent years on fuel cells in aeronautics. Boeing Research & Technology Centre (Madrid) successfully flew its converted Super Dimona in 2008 relying on a fuel cell based system. DLR flew in July 2009 with the motor-glider Antares powered by fuel cells. The goal of the ENFICA-FC project (ENvironmentally Friendly Inter City Aircraft powered by Fuel Cells - European Commission funded project coordinated by Prof. Giulio Romeo) was to develop and validate new concepts of fuel cell based power systems for more/all electric aircrafts belonging to a “inter-city” segment of the market.
Journal Article

A New Approach for the Estimation of the Aerodynamic Damping Characteristics of the ETF Demonstrator

2011-10-18
2011-01-2649
Nautilus S.p.A. and the Polytechnic of Turin, in cooperation with Blue Engineering, have developed a very versatile product, the ELETTRA Twin Flyers [6] (ETF), which consists in a very innovative remotely-piloted airship equipped with high precision sensors and communication devices. This multipurpose platform is particularly suitable for border and maritime surveillance missions and for telecommunication, both in military and civil area. To assess the actual maneuver capabilities of the airship [14], a prototype of reduced size and complexity has been assembled [16]. Before the flight tests a further assessment on the flight simulator is needed, because the first version of the software is tuned on the full scale prototype. Steady state performance and static stability of the demonstrator have been evaluated with CFD analysis.
Technical Paper

A Possible Adaptive Wing Apparatus for New UAV Configurations

2015-09-15
2015-01-2463
The problem of wing shape modification under loads in order to enhance the aircraft performance and control is continuously improving by researchers. This requirement is in contrast to the airworthiness regulations that constraint stiffness and stress of the structure in order to maintain structural integrity under operative flight conditions. The lifting surface modification is more stringent in those cases, such as UAV configurations, where the installed power is limited but the variety of operative scenario is wider than in conventional aircraft. A possible solution for adaptive wing configuration can be found in the VENTURAS Project idea. The VENTURAS Project is a funded project with the aim of improve the wind turbine efficiency by means of introducing a twisting capability for the blade sections according to the best situation in any wind condition. The blade structure is composed by two parts: 1) internal supporting element, 2) external deformable envelope.
Technical Paper

A Rack-like Facility Prototype for Ground Demonstration of a LSS Based on Plants

2009-07-12
2009-01-2582
In the frame of the space food production research activities conducted in the Thales Alenia Space Italia (TAS-I) Advanced Life Support Research and Development laboratory (RecycLAB, [6]), and with the contribution of a degree thesis developed in collaboration with the Politecnico of Torino, a rack-like facility for ground research on Life Support Systems based on Plants has been designed, developed, integrated, verified and tested in TAS-I. The new facility, called EDEN EPISODE 2, is a significant evolution of a previous TAS-I project (EDEN EPISODE 1) and takes benefit from other lower size TAS-I demonstrators (CUBE). It aims at realizing a completely closed and controlled environment for crop production, while a mobile lighting panel allows to maximize the delivered light in each phase of the plant life cycle. Hydroponic and aeroponic techniques have been implemented in the project for nutrient delivery to the plant roots.
Journal Article

A Reduced Order Model for the Aeroelastic Analysis of Flexible Wings

2013-09-17
2013-01-2158
The aeroelastic design of highly flexible wings, made of extremely light structures yet still capable of carrying a considerable amount of non-structural weights, requires significant effort. The complexity involved in such design demands for simplified mathematical tools based on appropriate reduced order models capable of predicting the accurate aeroelastic behaviour. The model presented in this paper is based on a consistent nonlinear beam model, capable of simulating the unconventional aeroelastic behaviour of flexible composite wings. The partial differential equations describing the wing dynamics are reduced to a dimensionless form in terms of three ordinary differential equations using a discretization technique, along with Galerkin's method. Within this approach the nonlinear structural model an unsteady indicial based aerodynamic model with dynamic stall are coupled.
Technical Paper

A numerical Methodology for Induction Motor Control: Lookup Tables Generation and Steady-State Performance Analysis

2024-04-09
2024-01-2152
This paper presents a numerical methodology to generate lookup tables that provide d- and q-axis stator current references for the control of electric motors. The main novelty with respect to other literature references is the introduction of the iron power losses in the equivalent-circuit electric motor model implemented in the optimization routine. The lookup tables generation algorithm discretizes the motor operating domain and, given proper constraints on maximum stator current and magnetic flux, solves a numerical optimization problem for each possible operating point to determine the combination of d- and q- axis stator currents that minimizes the imposed objective function while generating the desired torque. To demonstrate the versatility of the proposed approach, two different variants of this numerical interpretation of the motor control problem are proposed: Maximum Torque Per Ampere and Minimum Electromagnetic Power Loss.
Technical Paper

Advanced Components for Thermal Control of a Mercury Orbiting Spacecraft

2004-07-19
2004-01-2520
The European Space Agency ESA is preparing a mission to planet Mercury called BepiColombo in cooperation with ISAS, the Japanese space agency. Advanced thermal control materials and components are under development to allow the performance of the mission. The present paper gives an overview of the BepiColombo thermal control design and give emphasis to the continued effort in the development of a Solar Reflector Coating (SRC), an Optical Solar Reflector (OSR) and an Infra-Red Rejection Device (IRRD). Key issue in the development and validation of the components and related technologies is the long-term stability under the high temperature and high intensity radiation environment in the vicinity of Mercury. Therefore thermal and radiation endurance testing plays a major role. Candidate materials have been selected and the component design been defined. Development tests will establish mechanical, thermal and optical properties for the initial and end of life conditions.
Technical Paper

Aerodynamic Optimization Using Add-On Devices: Comparison Between CFD and Wind Tunnel Experimental Test

2022-03-29
2022-01-0885
JUNO is an urban concept vehicle (developed at the Politecnico of Torino), equipped by an ethanol combustion engine, designed to obtain low consumptions and reduced environmental impact. For these goals the main requirements that were considered during the designing process were mass reduction and aerodynamic optimization, at first on the shape of the car body and then, thanks to add-on devices. JUNO’s aerodynamic development follows a defined workflow: geometry definition and modelling, CFD simulations and analysis, and finally geometry changes and CFD new verification. In this paper the results of the CFD simulations (using STARCCM+ and RANS k-ε) with a corresponding 1/1 scale wind tunnel tests made using the real vehicle. Particularly, the results in term of: total drag coefficient (Cx), total lift coefficient (Cz), the total pressure in the side and rear analyzing twenty different aerodynamics configurations made up of different combination of some aerodynamics add-on devices.
Technical Paper

Aerodynamics' Influence on Performance in Human-Powered Vehicles for Sustainable Transportation

2024-06-12
2024-37-0028
The issue of greenhouse gas (GHG) emissions from the transportation sector is widely acknowledged. Recent years have witnessed a push towards the electrification of cars, with many considering it the optimal solution to address this problem. However, the substantial battery packs utilized in electric vehicles contribute to a considerable embedded ecological footprint. Research has highlighted that, depending on the vehicle's size, tens or even hundreds of thousands of kilometers are required to offset this environmental burden. Human-powered vehicles (HPVs), thanks to their smaller size, are inherently much cleaner means of transportation, yet their limited speed impedes widespread adoption for mid-range and long-range trips, favoring cars, especially in rural areas. This paper addresses the challenge of HPV speed, limited by their low input power and non-optimal distribution of the resistive forces.
Technical Paper

Aeroelastic Behaviour of Flexible Wings Carrying Distributed Electric Propulsion Systems

2017-09-19
2017-01-2061
An accurate aeroelastic assessment of powered HALE aircraft is of paramount importance considering that their behaviour contrasts the one of conventional aircraft mainly due to the use of high aspect-ratio wings with distributed propulsion systems. This particular configuration shows strong dependency of the wing natural frequencies to the propulsion distribution and operating conditions. Numerical and experimental investigations are carried out to better understand the behaviour of flexible wings, focusing on the effect of distributed electric propulsion systems. Several configurations are investigated, including a single propulsion system using an engine pod (a weight with embedded electric motor, a propeller, and the wing-attached structure) installed at selected spanwise positions, and configurations with two and three propellers.
Technical Paper

Application of Structural Topology Optimization to Couple Thin-Walled Stiffened Box-Beams

2017-09-19
2017-01-2059
Future generations of civil aircrafts and unconventional unmanned configurations demand for innovative structural concepts to improve the structural performance, and thus reduce the structural weight, but also to allow possible material couplings to be made. Static and dynamic aeroelastic stability can be altered by these couplings. It is therefore necessary to use an accurate and computationally efficient beam model during the preliminary design phase. A stiffened box, made of isotropic material, but with the stiffeners oriented so that they originate the expected bending/torsion coupling, is considered in the present work. The overall equivalent bending, torsional and coupled stiffness is derived by means of homogenization of the shell skin and of the stiffener plate stiffness. A new equivalent homogeneous orthotropic material is determined and introduced into the equivalent plate configuration.
Technical Paper

Attached Pressurized Module (APM) Outfitting Complements to Fit the Crew and Their Needs

1994-06-01
941588
APM outfitting complements can be defined as the equipment needed daily, for the crew to perform nominal tasks, this equipment not being part of the structure. As such, their utilization is the major guideline for the design and they must be considered at system level in order to evaluate all aspects of the situation. For example, the APM configuration will change from launch to completion. What are the consequences for the utilization and design of APM outfitting complements? In order to help the design of APM outfitting complements and to get a better understanding of their utilization for nominal operations, many of them have been tested in Europe in Parabolic Flights or in Neutral Buoyancy Tests. Among others, crew restraints (banister, foot restraints), equipment restraints (tether, velcro, tool box…), seat-track as common interface, and the concept of removable equipment have been tested and indeed interesting and surprising conclusions have been drawn.
Technical Paper

Columbus APM Environmental Control System Overview: Space Station and APM Restructuring Consequences

1994-06-01
941305
This paper describes the main changes affecting the APM Environmental Control System (ECS) as a consequence of the Space Station Freedom (SSF) restructuring and Columbus APM overall reconfiguration. The main purposes of this reconfiguration are: minimize the number and complexity of the interfaces with Space Station Freedom (SSF) centralize avionics command and monitoring tasks revisit the failure tolerance concept of some ECS functions unify/standardize similar functions in the two subsystem adjust lifetime requirements and simplify maintenance concept of equipment. The APM ECS consists of the following functions: active thermal control (ATCS) passive thermal control (PTCS) atmosphere pressure and composition control air revitalization and cabin ventilation temperature and humidity control vacuum and venting nitrogen supply fire detection and suppression. The new ATCS configuration provides a cooling capability for a reduced number of P/L racks by means of its moderate loop.
Technical Paper

Control Stability Analysis Applied to Columbus ATCS

2009-07-12
2009-01-2583
Good performance of the Columbus water loop active control system has been demonstrated by several analyses, ground test and is further confirmed by the current flight data. Even so, a comprehensive description of the control within the classical theory is needed, in order to complete the system description, posing also the basis for similar applications to come. Thermal and hydraulic control loops are considered as two separate systems and linear control methods are applied. Loop stability and performance is discussed by computing stability regions of the PI control coefficients at different loop configurations and results compared with available test, flight and simulation data.
Technical Paper

Design and Test of a Concept for Bepi-Colombo Mercury Orbiter Radiator

2008-06-29
2008-01-2068
Bepi Colombo is an ESA mission targeted to the exploration of Mercury with two spacecraft, a Mercury Polar Orbiter (MPO) provided by Europe and a Mercury Magnetospheric Orbiter (MMO) provided by Japan. The Mission is lead by Astrium Friedrichshafen, with Thales Alenia space Torino responsible for the MPO thermal design. The MPO is a 3-axis stabilized scientific spacecraft in Mercury polar eccentric orbit, with altitude from 400 to 1500 km, with one face planet oriented and pointing Nadir, and housing the apertures of the observation P/L. Studies for this mission were initiated in the late 90ies, and pointed out that one of the main design drivers for the MPO was the thermal environment in orbit, due to the combination of high solar constant (up to 10 solar constants on Earth), infrared and albedo from the planet (maximum IR up to about 4 terrestrial solar constants, albedo up to about 1).
Technical Paper

Development of Liquid Flow Metering Assemblies for Space

1999-07-12
1999-01-1981
As it is not possible to directly use commercial liquid flow meters in spacecraft fluid loops, a study was carried out for the European Space Agency to adapt commercial flow meter assemblies for space applications. The various activities (described in detail) eventually led to the selection of two commercial units, which were redesigned/adapted to be used in spacecraft single-phase (water) and two-phase (ammonia) thermal control loops. These flow meter assemblies were tested according to an agreed test programme, that included performance and calibration tests in a test bench (developed during the study), vibration testing and EMC/EMI testing. The results are discussed in order to assess to what extent the study objectives were met. Recommendations for future work are given also.
Technical Paper

EURECA Post-Flight Inspection: Observations on External Surfaces and Cooling Loop

1994-06-01
941569
In parallel to the detailed quantitative analyses performed by ERNO and ESTEC Material Division (subject of another paper), ESTEC carried out a thermal visual inspection of EURECA thermal control hardware aiming at understanding what kind of impact the LEO environment can have on materials and design configurations. The first part of the paper deals with the findings of the inspection. A brief description of the EURECA TCS design is given first, followed by the observations on the after-flight configuration. Some discrepancies between the as-designed and as-built configurations as well as the impact of the orbital environment on the hardware characteristics are the most significant outcome of the inspection. The cooling loop and its components were not directly inspected at ESTEC. The relevant activities are still on going at ERNO (EURECA prime contractor) and NASA. This paper includes all information available at the date of issue. Further results will be presented at the conference.
Technical Paper

Efficient Procedure for Robust Optimal Design of Aerospace Laminated Structures

2017-09-19
2017-01-2058
Innovative aircraft design studies have noted that uncertainty effects could become significant and greatly emphasized during the conceptual design phases due to the scarcity of information about the new aero-structure being designed. The introduction of these effects in design methodologies are strongly recommended in order to perform a consistent evaluation of structural integrity. The benefit to run a Robust Optimization is the opportunity to take into account uncertainties inside the optimization process obtaining a set of robust solutions. A major drawback of performing Robust Multi-Objective Optimization is the computational time required. The proposed research focus on the reduction of the computational time using mathematic and computational techniques. In the paper, a generalized approach to operate a Robust Multi-Objective Optimization (RMOO) for Aerospace structure using MSC software Patran/Nastran to evaluate the Objectives Function, is proposed.
Technical Paper

Energy Storage: Regenerative Fuel Cell Systems for Space Exploration

2011-10-18
2011-01-2624
Future exploration missions, including human missions to the Moon and Mars, are expected to have increasingly demanding operational requirements. Generating electrical power, and also maintaining a specific thermal environment, are both critical capabilities for any mission. In the case of exploration, both a wide range of mission types (robotic, human, ISRU etc.) and a variety of environments exist: from interplanetary space, to the shadow of a lunar crater, to the attenuated and red-shifted lighting on the Martian surface, power requirements must be met. This objective could be met with different technologies. The choice is dictated by the operating conditions and the different types of mission. TAS-I is historically mainly involved in missions related to the space exploration with the presence of astronauts. A typical example is the exploration of the Moon with the installation on the Moon surface of a base inclusive of pressurized habitats and rovers.
Technical Paper

Evaluation of Mission Electromagnetic Irradiation with ESABASE/SUNLIGHT

1994-06-01
941352
ESABASE/SUNLIGHT is a software tool to calculate illumination, effective illumination, exposure time, incident electromagnetic power, absorbed electromagnetic energy for spacecraft surfaces during planet orbiting missions considering sun and planet irradiation, effects of eclipse and self-shading, multireflections, transmission, pointing and (variable) geometry. Calculation applies a fast Monte Carlo raytracing algorithm and is based on wavelength dependent spectra and material properties. ESABASE/SUNLIGHT is fully integrated in the CAE-frame ESABASE which offers a powerful geometry specification language, orbit generator, pointing facility and advanced libraries as well as gateway, pre-, postprocessing and display tools with the benefits of standardisation and exchange to other analysis tools.
X