Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

3-Dimensional Numerical Simulation and Research on Internal Flow about Different EGR Rates in Venturi Tube of EGR System for a Turbocharged Diesel Engine

2024-04-09
2024-01-2418
Exhaust gas recirculation technology is one of the main methods to reduce engine emissions. The pressure of the intake pipe of turbocharged direct-injection diesel engine is high, and it is difficult to realize EGR technology. The application of Venturi tube can easily solve this problem. In this paper, the working principle of guide-injection Venturi tube is introduced, the EGR system and structure of a turbocharged diesel engine using the guide-injection Venturi tube are studied. According to the working principle of EGR system of turbocharged diesel engine, the model of guide-injection Venturi tube is established, the calculation grid is divided, and it is carried out by using Computational Fluid Dynamics method that the three-dimensional numerical simulation of the internal flow of Venturi tube under different EGR rates injection.
Technical Paper

A Comparison Between Different Hybrid Powertrain Solutions for an European Mid-Size Passenger Car

2010-04-12
2010-01-0818
Different hybrid powertrains for a European mid-size passenger car were evaluated in this paper through numerical simulation. Different degrees of hybridizations, from micro to mild hybrids, and different architectures and power sources management strategies were taken into account, in order to obtain a preliminary assessment of the potentialities of different hybrid systems for the European passenger car market. Both diesel and gasoline internal combustion engines were considered: a 1.6 dm₃ Common Rail turbocharged diesel, and a 1.4 dm₃ spark ignition turbocharged engine, equipped with an innovative Variable Valve Actuation system. Diesel hybrid powertrains, although being subject to NOx emissions constraints that could jeopardize their benefits, offered substantial advantages in comparison with gasoline hybrid powertrains. Potentialities for fuel consumption reductions up to 25% over the NEDC were highlighted, approaching the 2020 EU 95 g/km CO₂ target.
Technical Paper

A Fully Physical Correlation for Low Pressure EGR Control Linearization

2017-09-04
2017-24-0011
Nowadays stringent emission regulations are pushing towards new air management strategies like LP-EGR and HP/LP mix both for passenger car and heavy duty applications, increasing the engine control complexity. Within a project in collaboration between Kohler Engines EMEA, Politecnico di Torino, Ricardo and Denso to exploit the potential of EGR-Only technologies, a 3.4 liters KDI 3404 was equipped with a two stage turbocharging system, an extremely high pressure FIS and a low pressure EGR system. The LP-EGR system works in a closed loop control with an intake oxygen sensor actuating two valves: an EGR valve placed downstream of the EGR cooler that regulates the flow area of the bypass between the exhaust line and the intake line, and an exhaust flap to generate enough backpressure to recirculate the needed EGR rate to cut the NOx emission without a specific aftertreatment device.
Technical Paper

A Methodology to Mimic Cycle to Cycle Variations and to Predict Knock Occurrence through Numerical Simulation

2014-04-01
2014-01-1070
In this paper a novel approach to mimic through numerical simulation Cycle-to-Cycle Variations (CCV) of the combustion process of Spark Ignition (SI) engines is described. The proposed methodology allows to reproduce the variability in combustion which is responsible for knock occurrence and thus to replicate the stochastic behavior of this abnormal combustion phenomenon. On the basis of the analysis of a comprehensive database of experimental data collected on a typical European downsized and turbocharged SI engine, the proposed approach was demonstrated to be capable to replicate in the simulation process the same percentage of knocking cycles experimentally measured in light-knock conditions, after a proper calibration of the Kinetics-Fit (KF), a new phenomenological knock model which was recently developed by Gamma Technologies.
Technical Paper

A Novel Battery Impedance Model Considering Internal Temperature Gradient

2018-04-03
2018-01-0436
Battery models are often applied to describe the dynamic characteristics of batteries and can be used to predict the state of the battery. Due to the process of charging and discharging, the battery heat generation will cause the inhomogeneity between inner battery temperature and surface temperature. In this paper, a novel battery impedance model, which takes the impact of the battery internal temperature gradient on battery impedance into account, is proposed to improve the battery model performance. Several experiments are designed and conducted for pouch typed battery to investigate the electrochemical impedance spectroscopy (EIS) characteristics with the artificial temperature gradient (using a heating plate). Experimental results indicate that the battery internal temperature gradient will influence battery EIS regularly.
Technical Paper

A Numerical Model for the Virtual Calibration of a Highly Efficient Spark Ignition Engine

2023-09-29
2023-32-0059
Nowadays numerical simulations play a major role in the development of future sustainable powertrain thanks to their capability of investigating a wide spectrum of innovative technologies with times and costs significantly lower than a campaign of experimental tests. In such a framework, this paper aims to assess the predictive capabilities of an 1D-CFD engine model developed to support the design and the calibration of the innovative highly efficient spark ignition engine of the PHOENICE (PHev towards zerO EmissioNs & ultimate ICE efficiency) EU H2020 project. As a matter of fact, the availability of a reliable simulation platform is crucial to achieve the project target of 47% peak indicating efficiency, by synergistically exploiting the combination of innovative in-cylinder charge motion, Miller cycle with high compression ratio, lean mixture with cooled Exhaust Gas Recirculation (EGR) and electrified turbocharger.
Technical Paper

A PEM Fuel Cell Distributed Parameters Model Aiming at Studying the Production of Liquid Water Within the Cell During its Normal Operation: Model Description, Implementation and Validation

2011-04-12
2011-01-1176
One of the major issues coming out from low temperature fuel cells concerns the production of water vapor as a chemical reaction (between hydrogen and oxygen) by-product and its consequent condensation (at certain operating conditions), determining the presence of an amount of liquid water affecting the performance of the fuel cell stack: the production and the quantity of liquid water are strictly influenced by boundaries and power output conditions. Starting from this point, this work focuses on collecting all the required information available in literature and defining a suitable CFD model able to predict the production of liquid water within the fuel cell, while at the same time localizing it and determining the consequences on the PEM cell performances.
Technical Paper

A Progress Review on Gas Purge for Enhancing Cold Start Performance in PEM Fuel Cell

2018-04-03
2018-01-1312
Cold start capability is one of remaining major challenges in realizing PEMFC (Proton Exchange Membrane Fuel Cell) technology for automotive applications. Gas purge is a common and integral shutdown procedure of a PEMFC automotive in subzero temperature. A dryer membrane electrode assembly (MEA) can store more water before it gets saturated and ice starts to penetrate in the open pores of porous media, thus enhancing cold start capability of a PEMFC. Therefore, gas purge is always performed prior to fuel cell shutdown to minimize residual water in a PEMFC. In the hope of improving effectiveness of purge in a PEMFC vehicle, two important purge parameters are evaluated including purge time and energy requirement. In practice, an optimized gas purge protocol should be developed with minimal parasitic energy, short purge duration and no degradation of components. To conclude, the cold start capability and performance can be consolidated by proper design of gas purge strategies.
Technical Paper

A Road Load Data Processing Method for Transmission Durability Optimization Development

2020-04-14
2020-01-1062
With increasing pressure from environment problem for reduction in CO2 emissions and stricter fuel targets from road vehicles, new transmission technologies are gaining more attention in different main market. To get suitable road load data for transmission durability development is becoming increasingly important and can shorten the development time of new transmission. This paper presents the procedure and methods of road load data development for durability design of transmission product and optimization based on the real road data measurement, statistical characteristics evaluation and fatigue damage equivalency. Apply this road load data method procedure on 3 type of vehicle which represent conventional vehicle, BEV and HEV.
Technical Paper

A Study of Crevice HC Mechanism Based on the Transient HC Test Data and the Double Zone Combustion Model

2008-06-23
2008-01-1652
The effectiveness of after-treatment systems depends on the exhaust gas temperature, which is low during cold-start. As a result, Euro III, Euro IV and FTP75 require that the emissions tests include exhaust from the beginning of cold start. It is proved that 50%∼80% of HC and CO emissions are emitted during the cold start and the amount of unburned fuel from the crevices during starting is much higher than that under warmed engine conditions. The piston crevices is the most part of combustion chamber crevices, and results of mathematical simulations show that the piston crevice contribution to HC emissions is expected to increase during cold engine operation. Based on the transient HC test data and the double zone combustion model, this paper presents the study of the crevice HC Mechanism of the first firing cycle at cold start on an LPG SI Engine. A fast-response flame ionization detector (FFID) was employed to measure transient HC emissions of the first firing cycle.
Technical Paper

A Synergic Use of Innovative Technologies for the Next Generation of High Efficiency Internal Combustion Engines for PHEVs: The PHOENICE Project

2023-04-11
2023-01-0224
Despite the legislation targets set by several governments of a full electrification of new light-duty vehicle fleets by 2035, the development of innovative, environmental-friendly Internal Combustion Engines (ICEs) is still crucial to be on track toward the complete decarbonization of on road-mobility of the future. In such a framework, the PHOENICE (PHev towards zerO EmissioNs & ultimate ICE efficiency) project aims at developing a C SUV-class plug-in hybrid (P0/P4) vehicle demonstrator capable to achieve a -10% fuel consumption reduction with respect to current EU6 vehicle while complying with upcoming EU7 pollutant emissions limits. Such ambitious targets will require the optimization of the whole engine system, exploiting the possible synergies among the combustion, the aftertreatment and the exhaust waste heat recovery systems.
Journal Article

Active Noise Equalization of Vehicle Low Frequency Interior Distraction Level and its Optimization

2016-04-05
2016-01-1303
On the study of reducing the disturbance on driver’s attention induced by low frequency vehicle interior stationary noise, a subjective evaluation is firstly carried out by means of rank rating method which introduces Distraction Level (DL) as evaluation index. A visual-finger response test is developed to help evaluating members better recognize the Distraction Level during the evaluation. A non-linear back propagation artificial neural network (BPANN) is then modeled for the prediction of subjective Distraction Level, in which linear sound pressure RMS amplitudes of five Critical Band Rates (CBRs) from 20 to 500Hz are selected as inputs of the model. These inputs comprise an input vector of BPANN. Furthermore, active noise equalization (ANE) on DL is realized based on Filtered-x Least Mean Square (FxLMS) algorithm that controls the gain coefficients of inputs of trained BPANN.
Journal Article

Active Tire Pressure Control (ATPC) for Passenger Cars: Design, Performance, and Analysis of the Potential Fuel Economy Improvement

2018-04-03
2018-01-1340
Active tire pressure control (ATPC) is an automatic central tire inflation system (CTIS), designed, prototyped, and tested at the Politecnico di Torino, which is aimed at improving the fuel consumption, safety, and drivability of passenger vehicles. The pneumatic layout of the system and the designed solution for on board integration are presented. The critical design choices are explained in detail and supported by experimental evidence. In particular, the results of experimental tests, including the characterizations of various pneumatic components in working conditions, have been exploited to obtain a design, which allows reliable performance of the system in a lightweight solution. The complete system has been tested to verify its dynamics, in terms of actuation time needed to obtain a desired pressure variation, starting from the current tire pressure, and to validate the design.
Technical Paper

Adaptive Sliding Mode Kalman Observer for the Estimation of Vehicle Fuel Cell Humidity

2022-03-29
2022-01-0690
The efficiency and durability of fuel cells are affected by internal water content. Therefore, the active control of humidity is of great significance for vehicle fuel cells, especially for self-humidifying fuel cell systems. To realize fuel cell internal humidity active control, it is necessary to collect the humidity information of stack in real time, so as to carry out feedback control. However, humidity sensor has the characteristics of high cost and low durability, so it is more practical to get the feedback value of humidity by using state estimation method for high-power commercial fuel cell system such as vehicle fuel cell. However, humidity estimation is often affected by other physical or chemical dynamic processes, such as oxygen transportation and response process of electrical appliances. In order to weaken the influence of other physical or chemical dynamic processes on humidity estimation, this paper proposes an adaptive sliding mode Kalman observer (ASMK) algorithm.
Technical Paper

An Engine Parameters Sensitivity Analysis on Ducted Fuel Injection in Constant-Volume Vessel Using Numerical Modeling

2021-09-05
2021-24-0015
The use of Ducted Fuel Injection (DFI) for attenuating soot formation throughout mixing-controlled diesel combustion has been demonstrated impressively effective both experimentally and numerically. However, the last research studies have highlighted the need for tailored engine calibration and duct geometry optimization for the full exploitation of the technology potential. Nevertheless, the research gap on the response of DFI combustion to the main engine operating parameters has still to be fully covered. Previous research analysis has been focused on numerical soot-targeted duct geometry optimization in constant-volume vessel conditions. Starting from the optimized duct design, the herein study aims to analyze the influence of several engine operating parameters (i.e. rail pressure, air density, oxygen concentration) on DFI combustion, having free spray results as a reference.
Technical Paper

An Experimental Investigation on OBD II Techniques for Fuel Injection System Monitoring in a Common Rail Passenger Car Diesel Engine

2009-04-20
2009-01-0240
Different diagnostic techniques were experimentally tested on a common rail automotive 4 cylinder diesel engine in order to evaluate their capabilities to fulfill the California Air Resources Board (CARB) requirements concerning the monitoring of fuel injected quantity and timing. First, a comprehensive investigation on the sensitivity of pollutant emissions to fuel injection quantity and timing variations was carried out over 9 different engine operating points, representative of the FTP75 driving cycle: fuel injected quantity and injection timing were varied on a single cylinder at a time, until OBD thresholds were exceeded, while monitoring engine emissions, in-cylinder pressures and instantaneous crankshaft revolution speed.
Journal Article

An Experimental and Numerical Study of an Advanced EGR Control System for Automotive Diesel Engine

2008-04-14
2008-01-0208
In this study, a new EGR control technique, based on the estimate of the oxygen concentration in the intake manifold, was firstly investigated through numerical simulation and then experimentally tested, both under steady state and transient conditions. The robustness of the new control technique was also tested and compared with that of the conventional EGR control technique by means of both numerical simulation and experimental tests. Substantial reductions of the NOx emissions under transient operating conditions were achieved, and useful knowledge for controlling the EGR flow rate more accurately was obtained.
Technical Paper

An Improved PID Controller Based on Particle Swarm Optimization for Active Control Engine Mount

2017-03-28
2017-01-1056
Manufacturers have been encouraged to accommodate advanced downsizing technologies such as the Variable Displacement Engine (VDE) to satisfy commercial demands of comfort and stringent fuel economy. Particularly, Active control engine mounts (ACMs) notably contribute to ensuring superior effectiveness in vibration attenuation. This paper incorporates a PID controller into the active control engine mount system to attenuate the transmitted force to the body. Furthermore, integrated time absolute error (ITAE) of the transmitted force is introduced to serve as the control goal for searching better PID parameters. Then the particle swarm optimization (PSO) algorithm is adopted for the first time to optimize the PID parameters in the ACM system. Simulation results are presented for searching optimal PID parameters. In the end, experimental validation is conducted to verify the optimized PID controller.
Technical Paper

An Integrated Experimental and Numerical Methodology for Plug-In Hybrid Electric Vehicle 0D Modelling

2019-09-09
2019-24-0072
Governments worldwide are taking actions aiming to achieve a sustainable transportation system that can comprise of minimal pollutant and GHG emissions. Particular attention is given to the real-world emissions, i.e. to the emissions achieved in the real driving conditions, outside of a controlled testing environment. In this framework, interest in vehicle fleet electrification is rapidly growing, as it is seen as a way to simultaneously reduce pollutant and GHG emissions, while on the other hand OEMs are facing a significant increase in the number of tests which are needed to calibrate this new generation of electrified powertrains over a variety of different driving scenarios.
Technical Paper

An Integrated Methodology for 0D Map-Based Powertrain Modelling Applied to a 48 V Mild-Hybrid Diesel Passenger Car

2018-09-10
2018-01-1659
Nowadays, the 48 V vehicle architecture seems to be the perfect bridge between the 12 V system and the costly High Voltage (HV) electrification towards the crucial goal of CO2 and pollutants emissions reduction in combination with enhanced performance. However, this approach leads to an increased complexity in the interaction between different sub-systems targeting the optimization of the Energy Management System (EMS). Therefore, it becomes essential to perform a preliminary hardware assessment, exploring the interactions between the different components and quantifying the cost vs benefit trade-off. To this purpose, an integrated experimental/numerical methodology has been adopted: a comprehensive map-based Hybrid Electric Vehicle (HEV) model has been built, allowing the simulation of a variety of hybrid architectures, including both HV and 48 V systems.
X