Refine Your Search

Topic

Search Results

Technical Paper

A Comparison of Near-Field Acoustical Holography Methods Applied to Noise Source Identification

2019-06-05
2019-01-1533
Near-Field Acoustical Holography (NAH) is an inverse process in which sound pressure measurements made in the near-field of an unknown sound source are used to reconstruct the sound field so that source distributions can be clearly identified. NAH was originally based on performing spatial transforms of arrays of measured pressures and then processing the data in the wavenumber domain, a procedure that entailed the use of very large microphone arrays to avoid spatial truncation effects. Over the last twenty years, a number of different NAH methods have been proposed that can reduce or avoid spatial truncation issues: for example, Statistically Optimized Near-Field Acoustical Holography (SONAH), various Equivalent Source Methods (ESM), etc.
Technical Paper

A Desktop Procedure for Measuring the Transmission Loss of Automotive Door Seals

2017-06-05
2017-01-1760
Due the increasing concern with the acoustic environment within automotive vehicles, there is an interest in measuring the acoustical properties of automotive door seals. These systems play an important role in blocking external noise sources, such as aerodynamic noise and tire noise, from entering the passenger compartment. Thus, it is important to be able to conveniently measure their acoustic performance. Previous methods of measuring the ability of seals to block sound required the use of either a reverberation chamber, or a wind tunnel with a special purpose chamber attached to it. That is, these methods required the use of large and expensive facilities. A simpler and more economical desktop procedure is thus needed to allow easy and fast acoustic measurement of automotive door seals.
Technical Paper

A Dynamic Two-Phase Component Model Library for High Heat Flux Applications

2019-03-19
2019-01-1386
Pumped two-phase systems using mini or microchannel heat sink evaporators are prime candidates for high heat flux applications due to relatively low pumping power requirements and efficient heat removal in compact designs. A number of challenges exist in the implementation of these systems including: ensuring subcooled liquid to the pump to avoid cavitation, avoiding dry out conditions in heat exchangers that can lead to failures of the components under cooling, and avoiding flow instabilities that can damage components in an integrated system. To reduce risk and cost, modeling and simulation can be employed in the design and development of these complex systems, but such modeling must include the relevant behavior necessary to capture the above dynamic effects.
Technical Paper

A Transfer Path Approach for Experimentally Determining the Noise Impact of Hydraulic Components

2015-09-29
2015-01-2854
This work contributes to the overall goal of identifying and reducing noise sources and propagation in hydraulic systems. This is a general problem and a primary design concern for all fluid power applications. The need for new methods for identification of noise sources and transmission is evident in order to direct future modeling and experimental efforts aimed at reducing noise emissions of current fluid power machines. In this paper, this goal is accomplished through the formulation of noise functions used to identify contributions and transfer paths from different components of the system. An experimental method for noise transfer path analysis was developed and tested on a simple hydraulic system composed of a reference external gear pump, attached lines, and loading valve. Pressure oscillations in the working fluid are measured at the outlet of the pump. Surface vibrations are measured at multiple locations on the pump and connected system.
Technical Paper

Active Vibration Damping for Construction Machines Based on Frequency Identification

2016-09-27
2016-01-8121
Typically, earthmoving machines do not have wheel suspensions. This lack of components often causes uncomfortable driving, and in some cases reduces machine productivity and safety. Several solutions to this problem have been proposed in the last decades, and particularly successful is the passive solution based on the introduction of accumulators in the hydraulic circuit connecting the machine boom. The extra capacitance effect created by the accumulator causes a magnification of the boom oscillations, in such a way that these oscillations counter-react the machine oscillation caused by the driving on uneven ground. This principle of counter-reacting machine oscillations through the boom motion can be achieved also with electro-hydraulic solutions, properly actuating the flow supply to the boom actuators on the basis of a feedback sensors and a proper control strategy.
Technical Paper

Advanced Hydraulic Systems for Active Vibration Damping and Forklift Function to Improve Operator Comfort and Machine Productivity of Next Generation of Skid Steer Loaders

2016-09-27
2016-01-8116
Mobile Earth Moving Machinery like Skid-steer loaders have tight turning radius in limited spaces due to a short wheelbase which prevents the use of suspensions in these vehicles. The absence of a suspension system exposes the vehicle to ground vibrations of high magnitude and low frequency. Vibrations reduce operator comfort, productivity and life of components. Along with vibrations, the machine productivity is also hampered by material spillage which is caused by the tilting of the bucket due to the extension of the boom. The first part of the paper focuses on vibration damping. The chassis’ vibrations are reduced by the use of an active suspension element which is the hydraulic boom cylinder which is equivalent to a spring-damper. With this objective, a linear model for the skid steer loader is developed and a state feedback control law is implemented.
Technical Paper

Characterizing Crop-Waste Loads for Solid-Waste Processing

2007-07-09
2007-01-3187
In long-duration, closed human habitats in space that include crop growth, one challenge that is faced while designing a candidate waste processor is the composition of solid-waste loads, which include human waste, packaging and food-processing materials, crop spoilage, and plant residues. In this work, a new modeling tool is developed to characterize crop residues and food wastes based on diet in order to support the design of solid-waste technologies for closed systems. The model predicts amounts of crop residues and food wastes due to food processing, crop harvests, and edible spoilage. To support the design of solid-waste technologies, the generation of crop residues and food wastes was characterized for a 600-day mission to Mars using integrated menu, crop, and waste models. The three sources of plant residues and food waste are identified to be food processors, crop harvests, and edible spoilage.
Technical Paper

Cylinder Deactivation for Increased Engine Efficiency and Aftertreatment Thermal Management in Diesel Engines

2018-04-03
2018-01-0384
Diesel engine cylinder deactivation (CDA) can be used to reduce petroleum consumption and greenhouse gas (GHG) emissions of the global freight transportation system. Heavy duty trucks require complex exhaust aftertreatment (A/T) in order to meet stringent emission regulations. Efficient reduction of engine-out emissions require a certain A/T system temperature range, which is achieved by thermal management via control of engine exhaust flow and temperature. Fuel efficient thermal management is a significant challenge, particularly during cold start, extended idle, urban driving, and vehicle operation in cold ambient conditions. CDA results in airflow reductions at low loads. Airflow reductions generally result in higher exhaust gas temperatures and lower exhaust flow rates, which are beneficial for maintaining already elevated component temperatures. Airflow reductions also reduce pumping work, which improves fuel efficiency.
Technical Paper

Design of a High-Bandwidth, Low-Cost Hydrostatic Absorption Dynamometer with Electronic Load Control

2009-10-06
2009-01-2846
A low-cost hydrostatic absorption dynamometer has been developed for small to medium sized engines. The dynamometer was designed and built by students to support student projects and educational activities. The availability of such a dynamometer permits engine break-in cycles, performance testing, and laboratory instruction in the areas of engines, fuels, sensors, and data acquisition. The dynamometer, capable of loading engines up to 60kW at 155Nm and 3600rpm, incorporates a two-section gear pump and an electronically operated proportional pressure control valve to develop and control the load. A bypass valve permits the use of only one pump section, allowing increased fidelity of load control at lower torque levels. Torque is measured directly on the drive shaft with a strain gage. Torque and speed signals are transmitted by an inductively-powered collar mounted to the dynamometer drive shaft. Pressure transducers at the pump inlet and pump outlet allow secondary load measurement.
Journal Article

Designing for Large-Displacement Stability in Aircraft Power Systems

2008-11-11
2008-01-2867
Due to the instabilities that may occur in power systems with regulated loads such as those used in military aircraft, ships, and terrestrial vehicles, many analysis techniques and design methodologies have been developed to ensure stable operation for expected operating conditions. However, many of these techniques are difficult to apply to complex systems and do not guarantee large-displacement stability following major disturbances such as faults, regenerative operation, large pulsed loads, and/or the loss of generating capacity. In this paper, a design paradigm is set forth guaranteeing large-displacement stability of a power system containing a significant penetration of regulated (constant-power) loads for any value of load power up to and including the steady-state rating of the source. Initial investigations are performed using an idealized model of a dc-source to determine the minimum requirements that ensure large-displacement stability.
Technical Paper

Diesel Engine Noise Source Visualization with Wideband Acoustical Holography

2017-06-05
2017-01-1874
Wideband Acoustical Holography (WBH), which is a monopole-based, equivalent source procedure (J. Hald, “Wideband Acoustical Holography,” INTER-NOISE 2014), has proven to offer accurate noise source visualization results in experiments with a simple noise source: e.g., a loudspeaker (T. Shi, Y. Liu, J.S. Bolton, “The Use of Wideband Holography for Noise Source Visualization”, NOISE-CON 2016). From a previous study, it was found that the advantage of this procedure is the ability to optimize the solution in the case of an under-determined system: i.e., when the number of measurements is much smaller than the number of parameters that must be estimated in the model. In the present work, a diesel engine noise source was measured by using one set of measurements from a thirty-five channel combo-array placed in front of the engine.
Technical Paper

Effects of Geometric Parameters on the Sound Transmission Characteristic of Bulb Seals

2003-05-05
2003-01-1701
Sound transmission through door and window sealing systems is one important contributor to vehicle interior noise. The noise generation mechanism involves the vibration of the seal due to the unsteady wall pressures associated with the turbulent flow over the vehicle. For bulb seals, sound transmission through the seal is governed by the resonance of the seal membranes and the air cavity within the bulb (the so-called mass-air-mass resonance). The objective of this study was to develop a finite element (FE) model to predict the sound transmission loss of elastomeric bulb seals. The model was then exercized to perform a parametric study of the influence of seveal seal design parameters. The results suggest that the sound transmission loss increases as the membrane thicknesses and/or the separation distance between the two seal walls are increased. The addition of additional internal “webs” was found to have adverse effects on the sound barrier performance.
Technical Paper

Effects of Window Seal Mechanical Properties on Vehicle Interior Noise

2003-05-05
2003-01-1703
One dominant “wind noise” generating mechanism in road vehicles is the interaction between turbulent flows and flexible structures which include side glass windows. In this study, the effects of seal mechanical properties on the sound generated from flow-induced vibration of side glass windows were investigated. The primary goal was to assess the influence of seal support properties on the noise generated from a plate. Two different models to calculate the optimal support stiffness of the seal that minimizes the velocity response are presented. The results show that both the velocity response and the sound radiation are strongly influenced by dissipation of vibration energy at the edges. It is demonstrate that support tuning can yield significant noise and vibration reduction.
Technical Paper

Efficient Design of Shell-and-Tube Heat Exchangers Using CAD Automation and Fluid flow Analysis in a Multi-Objective Bayesian Optimization Framework

2024-04-09
2024-01-2456
Shell-and-tube heat exchangers, commonly referred to as radiators, are the most prevalent type of heat exchanger within the automotive industry. A pivotal goal for automotive designers is to increase their thermal effectiveness while mitigating pressure drop effects and minimizing the associated costs of design and operation. Their design is a lengthy and intricate process involving the manual creation and refinement of computer-aided design (CAD) models coupled with iterative multi-physics simulations. Consequently, there is a pressing demand for an integrated tool that can automate these discrete steps, yielding a significant enhancement in overall design efficiency. This work aims to introduce an innovative automation tool to streamline the design process, spanning from CAD model generation to identifying optimal design configurations. The proposed methodology is applied explicitly to the context of shell-and-tube heat exchangers, showcasing the tool's efficacy.
Technical Paper

Equivalent System Mass (ESM) Estimates for Commercially Available, Small-Scale Food Processing Equipment

2004-07-19
2004-01-2526
One of the challenges NASA faces today is developing an Advanced Life Support (ALS) system that will enable long duration space missions beyond low earth orbit (LEO). This ALS system must include a food processing subsystem capable of producing a variety of nutritious, acceptable, and safe edible ingredients and food products from pre-packaged and re-supply foods as well as salad crops grown on the transit vehicle or other crops grown on planetary surfaces. However, designing, building, developing, and maintaining such a subsystem is bound to many constraints and restrictions. The limited power supply, storage locations, variety of crops, crew time, need to minimize waste, and other ESM parameters influence the selection of processing equipment and techniques.
Technical Paper

Experimental Validation of Eco-Driving and Eco-Heating Strategies for Connected and Automated HEVs

2021-04-06
2021-01-0435
This paper presents experimental results that validate eco-driving and eco-heating strategies developed for connected and automated vehicles (CAVs). By exploiting vehicle-to-infrastructure (V2I) communications, traffic signal timing, and queue length estimations, optimized and smoothed speed profiles for the ego-vehicle are generated to reduce energy consumption. Next, the planned eco-trajectories are incorporated into a real-time predictive optimization framework that coordinates the cabin thermal load (in cold weather) with the speed preview, i.e., eco-heating. To enable eco-heating, the engine coolant (as the only heat source for cabin heating) and the cabin air are leveraged as two thermal energy storages. Our eco-heating strategy stores thermal energy in the engine coolant and cabin air while the vehicle is driving at high speeds, and releases the stored energy slowly during the vehicle stops for cabin heating without forcing the engine to idle to provide the heating source.
Journal Article

FE Simulation of Split in Fundamental Air-Cavity Mode of Loaded Tires: Comparison with Empirical Results

2021-08-31
2021-01-1064
Tire/road noise has become a significant issue in the automotive industry, especially for electric vehicles. Among the various tire/road noise sources, the air-cavity mode can amplify the forces transmitted from the tire to the suspension system causing noticeable cabin noise near 200 Hz. Furthermore, when the tire is deformed by loading, the fundamental air-cavity mode separates into two acoustic modes, a fore-aft mode and vertical mode due to the break in geometrical symmetry. This is important because the two components of the split mode can increase force levels at the hub by interacting with neighboring structural modes, thus resulting in increased interior noise levels. In this research, finite element simulations of five commercial tires at rated load were performed with a view to identifying the frequency split and its interaction with structural resonances. These results have been compared with previously obtained empirical results.
Journal Article

Implementation of Thermomechanical Multiphysics in a Large-Scale Three-Dimensional Topology Optimization Code

2021-04-06
2021-01-0844
Due to the inherent computational cost of multiphysics topology optimization methods, it is a common practice to implement these methods in two-dimensions. However most real-world multiphysics problems are best optimized in three-dimensions, leading to the necessity for large-scale multiphysics topology optimization codes. To aid in the development of these codes, this paper presents a general thermomechanical topology optimization method and describes how to implement the method into a preexisting large-scale three-dimensional topology optimization code. The weak forms of the Galerkin finite element models are fully derived for mechanical, thermal, and coupled thermomechanical physics models. The objective function for the topology optimization method is defined as the weighted sum of the mechanical and thermal compliance. The corresponding sensitivity coefficients are derived using the direct differentiation method and are verified using the complex-step method.
Journal Article

Improvements to a Method to Simulate Non-Stationary Wind Noise in Vehicles

2023-05-08
2023-01-1122
As the vehicle and wind speeds and directions change, the unsteady flow creates non-stationary wind noise. To investigate people’s perceptions of non-stationary wind noise, a method to simulate the non-stationary wind noise is needed. Previously, a method was developed that used stationary recordings taken at several speeds and directions to create a set of sound pressure level predictions in each one-third octave band that are a function of wind speed and direction. These functions are used to create time-varying filters based on provided wind profiles. A reference wind noise measurement is then filtered to produce the sounds. A drawback of this method is that many stationary wind condition measurements are needed to form accurate sound pressure level functions, which can be time consuming. A method requiring fewer measurements was investigated.
Technical Paper

Influence of Line Length Concerning Noise Source Generation in Hydrostatic Transmissions

2008-10-07
2008-01-2722
The objective of this work is to demonstrate the influence of line length concerning noise source generation using a coupled pump-motor-line model predicting superimposed pulsations of a hydrostatic transmission. This transmission model predicts superimposed flow pulsations throughout the connecting lines as well as oscillating forces dependant on system pressure variances; such oscillations are the primary sources of noise in hydrostatic transmissions which are known as FBN and SBN (Fluid Borne Noise and Structure Borne Noise), respectively. This study is a part of novel research where the prediction of superimposed noise sources considering interrelating dynamics of the pump/motor and connecting lines is accomplished and can potentially be used to develop noise source reduction strategies. An investigation considering the influence of line length demonstrates the potential to further reduce noise source generation in hydrostatic transmissions.
X