Refine Your Search

Topic

Author

Search Results

Technical Paper

1-D Dynamic Diesel Particulate Filter Model for Unsteady Pulsating Flow

2007-04-16
2007-01-1140
A fast time-scale 1-D dynamic diesel particulate filter model capable of resolving the pressure pulsations due to individual cylinder firing events is presented. The purpose of this model is to investigate changes in the firing frequency component of the pulsating exhaust flow at different particulate loadings. Experimental validation data and simulation results clearly show that the magnitude and phase of the firing frequency components are directly correlated to the mass of particulate stored in a diesel particulate filter. This dynamic pressure signal information may prove particularly useful for monitoring particulate load during vehicle operation.
Technical Paper

A Desktop Procedure for Measuring the Transmission Loss of Automotive Door Seals

2017-06-05
2017-01-1760
Due the increasing concern with the acoustic environment within automotive vehicles, there is an interest in measuring the acoustical properties of automotive door seals. These systems play an important role in blocking external noise sources, such as aerodynamic noise and tire noise, from entering the passenger compartment. Thus, it is important to be able to conveniently measure their acoustic performance. Previous methods of measuring the ability of seals to block sound required the use of either a reverberation chamber, or a wind tunnel with a special purpose chamber attached to it. That is, these methods required the use of large and expensive facilities. A simpler and more economical desktop procedure is thus needed to allow easy and fast acoustic measurement of automotive door seals.
Technical Paper

A Dynamic Two-Phase Component Model Library for High Heat Flux Applications

2019-03-19
2019-01-1386
Pumped two-phase systems using mini or microchannel heat sink evaporators are prime candidates for high heat flux applications due to relatively low pumping power requirements and efficient heat removal in compact designs. A number of challenges exist in the implementation of these systems including: ensuring subcooled liquid to the pump to avoid cavitation, avoiding dry out conditions in heat exchangers that can lead to failures of the components under cooling, and avoiding flow instabilities that can damage components in an integrated system. To reduce risk and cost, modeling and simulation can be employed in the design and development of these complex systems, but such modeling must include the relevant behavior necessary to capture the above dynamic effects.
Technical Paper

A Mixture Fraction Averaged Approach to Modeling NO and Soot in Diesel Engines

2001-03-05
2001-01-1005
Multidimensional models are increasingly employed to predict NO and soot emissions from Diesel engines. In the traditional approach, the ensemble-averaged values of variables are employed in the expressions for NO and soot formation and oxidation. In the mixture fraction averaged approach, the values of state variables and species concentrations are obtained from the structure of laminar diffusion flames. The source terms for NO and soot are then obtained by averaging across the mixture fraction coordinate with a probability density function. The clipped-Gaussian probability density function and profiles obtained by employing the OPPDIF code (part of the CHEMKIN package) for the laminar flame structure are employed in this work. The Zeldovich mechanism for NO formation and the Moss et al. formation and Nagle-Strickland-Constable oxidation model for soot have been employed to study the qualitative trends of pollutants in transient combusting Diesel jets.
Technical Paper

A New Lab for Testing Biofiltration for Advanced Life Support

2005-07-11
2005-01-3060
Bioregenerative systems for removal of gaseous contaminants are desired for long-term space missions to reduce the equivalent system mass of the air cleaning system. This paper describes an innovative design of a new biofiltration test lab for investigating the capability of biofiltration process for removal of ersatz multi-component gaseous streams representative of spacecraft contaminants released during long-term space travel. The lab setup allows a total of 24 bioreactors to receive identical inlet waste streams at stable contaminant concentrations via use of permeations ovens, needle valves, precision orifices, etc. A unique set of hardware including a Fourier Transform Infrared (FTIR) spectrometer, and a data acquisition and control system using LabVIEW™ software allows automatic, continuous, and real-time gas monitoring and data collection for the 24 bioreactors. This lab setup allows powerful factorial experimental design.
Journal Article

A Novel Pressure-Feedback Based Adaptive Control Method to Damp Instabilities in Hydraulic Machines

2012-09-24
2012-01-2035
Excessive vibration and poor controllability occur in many mobile fluid power applications, with negative consequences as concerns operators' health and comfort as well as machine safety and productivity. This paper addresses the problem of reducing oscillations in fluid power machines presenting a novel control technique of general applicability. Strong nonlinearities of hydraulic systems and the unpredictable operating conditions of the specific application (e.g. uneven ground, varying loads, etc.) are the main challenges to the development of satisfactory general vibration damping methods. The state of the art methods are typically designed as a function of the specific application, and in many cases they introduce energy dissipation and/or system slowdown. This paper contributes to this research by introducing an energy efficient active damping method based on feedback signals from pressure sensors mounted on the flow control valve block.
Journal Article

A Numerical Investigation of Ignition of Ultra-Lean Premixed H2/Air Mixtures by Pre-Chamber Supersonic Hot Jet

2017-10-05
2017-01-9284
Gas engines often utilize a small-volume pre-chamber in which fuel is injected at near stoichiometric condition to produce a hot turbulent jet which then ignites the lean mixture in the main chamber. Hot jet ignition has several advantages over traditional spark ignition, e.g., more reliable ignition of extra-lean mixtures and more surface area for ignition resulting in faster burning and improved combustion burn time. Our previous experimental results show that supersonic jets could extend the lean flammability limit of fuel/air mixtures in the main chamber in comparison to subsonic jets. The present paper investigated the characteristics of supersonic hot jets generated by combustion of stoichiometric H2/air in a pre-chamber to understand the ignition mechanism of ultra-lean mixtures by supersonic hot jets.
Technical Paper

A Photostress Study of Spur Gear Teeth

1967-05-15
670503
An experimental-analytic method of determining the stress distribution in narrow faced spur gear teeth is presented. The successful application of photostress to this contact problem is reported. It utilizes a digital computer routine developed for separating stresses in any general two-dimensional region. Results for two pairs of gears are presented. Comparison is made with values predicted by the modified Lewis formula, the Kelley and Pedersen equation, and by the Belajef solution of the Hertz contact problem for two cylinders.
Technical Paper

A Review of Lattice Boltzmann Methods for Multiphase Flows Relevant to Engine Sprays

2005-04-11
2005-01-0996
This paper reviews some applications of lattice Boltzmann methods (LBM) to compute multiphase flows. The method is based on the solution of a kinetic equation which describes the evolution of the distribution of the population of particles whose collective behavior reproduces fluid behavior. The distribution is modified by particle streaming and collisions on a lattice. Modeling of physics at a mesoscopic level enables LBM to naturally incorporate physical properties needed to compute complex flows. In multiphase flows, the surface tension and phase segregation are incorporated by considering intermolecular attraction forces. Furthermore, the solution of the kinetic equations representing linear advection and collision, in which non-linearity is lumped locally, makes it parallelizable with relative ease. In this paper, a brief review of the lattice Boltzmann method relevant to engine sprays will be presented.
Technical Paper

A Simulation Model for a Tandem External Gear Pump for Automotive Transmission

2018-04-03
2018-01-0403
This paper describes a simulation approach for the modeling of tandem external gear pumps. A tandem gear pump is the combination of two pumps with a common drive shaft. Such design architecture finds application in certain automotive transmission systems. The model presented in this work is applicable for pumps with both helical and spur gears. The simulation model is built on the HYGESim (HYdraulic GEars machines Simulator) previously developed by the authors for external spur gear units. In this work, the model formulation is properly extended to the capabilities of simulating helical gears. Starting directly from the CAD drawings of the unit, the fluid-dynamic model solves the internal instantaneous tooth space volume pressures and the internal flows following a lumped parameter approach. The simulation tool considers also the radial micro-motion of the gears, which influences the internal leakages and the features of the meshing process.
Technical Paper

A Transfer Path Approach for Experimentally Determining the Noise Impact of Hydraulic Components

2015-09-29
2015-01-2854
This work contributes to the overall goal of identifying and reducing noise sources and propagation in hydraulic systems. This is a general problem and a primary design concern for all fluid power applications. The need for new methods for identification of noise sources and transmission is evident in order to direct future modeling and experimental efforts aimed at reducing noise emissions of current fluid power machines. In this paper, this goal is accomplished through the formulation of noise functions used to identify contributions and transfer paths from different components of the system. An experimental method for noise transfer path analysis was developed and tested on a simple hydraulic system composed of a reference external gear pump, attached lines, and loading valve. Pressure oscillations in the working fluid are measured at the outlet of the pump. Surface vibrations are measured at multiple locations on the pump and connected system.
Technical Paper

A Wall-Modified Flamelet Model for Diesel Combustion

2004-03-08
2004-01-0103
In this paper, a wall-modified interactive flamelet model is developed for improving the modeling of Diesel combustion. The objective is to include the effects of wall heat loss on the transient flame structure. The essential idea is to compute several flamelets with several representative enthalpy defects which account for wall heat loss. Then, the averaged flamelet profile can be obtained through a linear fit between the flamelets according to the enthalpy defect of the local gas which results from the wall heat loss. The enthalpy defect is estimated as the difference between the enthalpy in a flamelet without wall heat loss, which would correspond to the enthalpy in the gas without wall heat loss, and the gas with wall heat loss. The improved model is applied to model combustion in a Diesel engine. In the application, two flamelets, one without wall heat loss and one with wall heat loss, are considered.
Technical Paper

Adoption Patterns for Precision Agriculture

1998-09-14
982041
Early experience with precision farming technology suggests that some hardware and software may follow a rapid S curve adoption path, but that the use of integrated precision farming systems may take longer to develop and be subject to false starts and periods of stagnation. Yield monitors appear to be following a classic S curve adoption path. Precision farming adoption is like that of hybrid corn because changes in organizations will be required to use it effectively. It is like motorized mechanization because it is coming on the market in an immature form and lends itself to farmer tinkering.
Technical Paper

An Evaluation of a Composite Model for Predicting Drop-Drop Collision Outcomes in Multidimensional Spray Computations

2002-03-04
2002-01-0943
The standard model for predicting the outcome of drop-drop collisions in sprays is one developed based on measurements in rain drops under atmospheric pressure conditions. This model includes the possible outcomes of grazing collisions and coalescence. Recent measurements with hydrocarbon drops and at higher pressure (up to 12 bar) indicate the possibility of additional outcomes: bounce, reflexive separation and drop shattering. The measurements also indicate that the Weber number range over which bounce occurs is dependent on the gas pressure. The probability of a drop-drop collision resulting in bounce increases with gas pressure. A composite model that includes all these outcomes as possibilities is employed to carry out computations in a constant volume chamber and in a Diesel engine. A sub-model for bounce that includes the pressure effects is also part of the composite model.
Technical Paper

Comparisons of Computed and Measured Results of Combustion in a Diesel Engine

1998-02-23
980786
Results of computations of flows, sprays and combustion performed in an optically- accessible Diesel engine are presented. These computed results are compared with measured values of chamber pressure, liquid penetration, and soot distribution, deduced from flame luminosity photographs obtained in the engine at Sandia National Laboratories and reported in the literature. The computations were performed for two operating conditions representing low load and high load conditions as reported in the experimental work. The computed and measured peak pressures agree within 5% for both the low load and the high load conditions. The heat release rates derived from the computations are consistent with expectations for Diesel combustion with a premixed phase of heat release and then a diffusion phase. The computed soot distribution shows noticeable differences from the measured one.
Technical Paper

Computations of Soot and NO in Lifted Flames under Diesel Conditions

2014-04-01
2014-01-1128
In this work, computations of reacting diesel jets, including soot and NO, are carried out for a wide range of conditions by employing a RANS model in which an unsteady flamelet progress variable (UFPV) sub-model is employed to represent turbulence/chemistry interactions. Soot kinetics is represented using a chemical mechanism that models the growth of soot precursors starting from a single aromatic ring by hydrogen abstraction and carbon (acetylene) addition and NO is modeled using the kinetics from a sub-mechanism of GRI-Mech 3.0. Tracer particles are used to track the residence time of the injected mass in the jet. For the soot and NO computations, this residence time is used to track the progression of the soot and NO reactions in time. The conditions selected reflect changes in injection pressure, chamber temperature, oxygen concentration, and density, and orifice diameter.
Technical Paper

Conditions In Which Vaporizing Fuel Drops Reach A Critical State In A Diesel Engine

1999-03-01
1999-01-0511
It has been shown recently that the maximum penetration of the liquid phase in a vaporizing Diesel spray is relatively short compared to the overall jet penetration and that this maximum is reached in 2 - 4°CA after start of injection. This implies that the drops that are formed by atomization vaporize in a short characteristic time and length relative to other physical processes. This paper addresses an important question related to this observation: Are the vaporizing fuel drops disappearing because they reach a critical state? Related to this question is another: Under what conditions will vaporizing fuel drops reach a critical state in a Diesel engine? Single drops of pure component liquid hydrocarbons and their mixtures vaporizing in quiescent nitrogen or carbon dioxide gas environments with ambient pressures and temperatures at values typically found in Diesel engines are examined.
Technical Paper

Cylinder Deactivation for Increased Engine Efficiency and Aftertreatment Thermal Management in Diesel Engines

2018-04-03
2018-01-0384
Diesel engine cylinder deactivation (CDA) can be used to reduce petroleum consumption and greenhouse gas (GHG) emissions of the global freight transportation system. Heavy duty trucks require complex exhaust aftertreatment (A/T) in order to meet stringent emission regulations. Efficient reduction of engine-out emissions require a certain A/T system temperature range, which is achieved by thermal management via control of engine exhaust flow and temperature. Fuel efficient thermal management is a significant challenge, particularly during cold start, extended idle, urban driving, and vehicle operation in cold ambient conditions. CDA results in airflow reductions at low loads. Airflow reductions generally result in higher exhaust gas temperatures and lower exhaust flow rates, which are beneficial for maintaining already elevated component temperatures. Airflow reductions also reduce pumping work, which improves fuel efficiency.
Technical Paper

Dependence of Fuel-Air Mixing Characteristics on Injection Timing in an Early-Injection Diesel Engine

2002-03-04
2002-01-0944
In recent years, there has been an interest in early-injection Diesel engines as it has the potential of achieving a more homogeneous and leaner mixture close to top-dead-center (TDC) compared to standard Diesel engines. The more homogeneous mixture may result in reduced NOx and soot emissions and higher efficiency. Diesel engines in which a homogeneous mixture is achieved close to TDC are known as Homogenous Charge Compression Ignition (HCCI) engines. PREmixed lean DIesel Combustion (PREDIC) engines in which the start of fuel injection is considerably advanced in comparison with that of the standard Diesel engine is an attempt to achieve a mode of operation close to HCCI. Earlier studies have shown that in a PREDIC engine, the fuel injection timing affects the mixture formation and hence influences combustion and pollutant formation.
Technical Paper

Derivation of the Three-Dimensional Installation Ratio for Dual A-Arm Suspensions

2004-11-30
2004-01-3535
Conventional suspension analysis of three-dimensional suspensions typically use two-dimensional analyses. This is done by projecting suspension components onto two-dimensional planes and then performing a two-dimensional analysis in each of these orthogonal planes or neglecting motions in one of the planes entirely. This requires multiple iterations because changes in one plane require a checking of their effects on motion in the other orthogonal planes. In doing so, much of the insight and accuracy gained from a three-dimensional analysis can be lost. A three-dimensional kinematic analysis approach is presented and applied to a dual A-Arm suspension system. All motions are considered instantaneously about a screw axis instead of a point as used by the usual two-dimensional modeling approach. The model predicts deflections of suspension components in response to the three-dimensional forces present at the contact patch.
X