Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1-D Dynamic Diesel Particulate Filter Model for Unsteady Pulsating Flow

2007-04-16
2007-01-1140
A fast time-scale 1-D dynamic diesel particulate filter model capable of resolving the pressure pulsations due to individual cylinder firing events is presented. The purpose of this model is to investigate changes in the firing frequency component of the pulsating exhaust flow at different particulate loadings. Experimental validation data and simulation results clearly show that the magnitude and phase of the firing frequency components are directly correlated to the mass of particulate stored in a diesel particulate filter. This dynamic pressure signal information may prove particularly useful for monitoring particulate load during vehicle operation.
Technical Paper

A Comparison of Near-Field Acoustical Holography Methods Applied to Noise Source Identification

2019-06-05
2019-01-1533
Near-Field Acoustical Holography (NAH) is an inverse process in which sound pressure measurements made in the near-field of an unknown sound source are used to reconstruct the sound field so that source distributions can be clearly identified. NAH was originally based on performing spatial transforms of arrays of measured pressures and then processing the data in the wavenumber domain, a procedure that entailed the use of very large microphone arrays to avoid spatial truncation effects. Over the last twenty years, a number of different NAH methods have been proposed that can reduce or avoid spatial truncation issues: for example, Statistically Optimized Near-Field Acoustical Holography (SONAH), various Equivalent Source Methods (ESM), etc.
Journal Article

A Computational Multiaxial Model for Stress-Strain Analysis of Ground Vehicle Notched Components

2017-03-28
2017-01-0329
Driveline and suspension notched components of off-road ground vehicles often experience multiaxial fatigue failures along notch locations. Large nominal load histories may induce local elasto-plastic stress and strain responses at the critical notch locations. Fatigue life prediction of such notched components requires detailed knowledge of local stresses and strains at notch regions. The notched components that are often subject to multiaxial loadings in services, experience complex stress and strain responses. Fatigue life assessment of the components utilizing non-linear Finite Element Analysis (FEA) require unfeasibly inefficient computation times and large data. The lack of more efficient and effective methods of elasto-plastic stress-strain calculation may lead to the overdesign or earlier failures of the components or costly experiments and inefficient non-linear FEA.
Technical Paper

A Desktop Procedure for Measuring the Transmission Loss of Automotive Door Seals

2017-06-05
2017-01-1760
Due the increasing concern with the acoustic environment within automotive vehicles, there is an interest in measuring the acoustical properties of automotive door seals. These systems play an important role in blocking external noise sources, such as aerodynamic noise and tire noise, from entering the passenger compartment. Thus, it is important to be able to conveniently measure their acoustic performance. Previous methods of measuring the ability of seals to block sound required the use of either a reverberation chamber, or a wind tunnel with a special purpose chamber attached to it. That is, these methods required the use of large and expensive facilities. A simpler and more economical desktop procedure is thus needed to allow easy and fast acoustic measurement of automotive door seals.
Journal Article

A Direct Yaw Control Algorithm for On- and Off-Road Yaw Stability

2011-04-12
2011-01-0183
Models for off-road vehicles, such as farm equipment and military vehicles, require an off-road tire model in order to properly understand their dynamic behavior on off-road driving surfaces. Extensive literature can be found for on-road tire modeling, but not much can be found for off-road tire modeling. This paper presents an off-road tire model that was developed for use in vehicle handling studies. An on-road, dry asphalt tire model was first developed by performing rolling road force and moment testing. Off-road testing was then performed on dirt and gravel driving surfaces to develop scaling factors that explain how the lateral force behavior of the tire will scale from an on-road to an off-road situation. The tire models were used in vehicle simulation software to simulate vehicle behavior on various driving surfaces. The simulated vehicle response was compared to actual maximum speed before sliding vs. turning radius data for the studied vehicle to assess the tire model.
Technical Paper

A Fatigue Life Prediction Method of Rubber Material for Automobile Vibration Isolator under Road Load Spectrum

2022-03-29
2022-01-0253
Automobile rubber isolator was subjected to random load cycle for a long time in the service process, and its main rubber material for vibration isolation was prone to fatigue failure. Since the traditional Miner damage theory overlooked the load randomness, it had a prediction error problem. In order to improve the prediction accuracy of rubber fatigue life, the traditional Miner damage theory was modified by random uncertainty theory to predict the rubber fatigue life under random load. Firstly, the rubber dumbbell-shaped test column, which was vulcanized from rubber materials commonly used in vibration isolators, was taken as the research object. The uniaxial fatigue test of rubber under different strain amplitudes and strain mean values was carried out. Then the fatigue characteristic curve of rubber with equivalent strain amplitude as the damage parameter was established.
Technical Paper

A Method for Acquiring and Editing the Load Spectrum of the Drive-Shaft System for an All-Terrain Vehicle

2022-03-29
2022-01-0268
The durability road test of a vehicle is an important test to verify the reliability of vehicle components. In order to carry out the durability bench test for drive shaft systems of all-terrain vehicles, a method for acquiring time domain signals of articulation angles of the CVJ, input torque, and rotational speeds of drive shaft systems is proposed. The acquired load spectrum of drive shaft systems is preprocessed including deleting small amplitudes, de-drifting, deburring, filtering, etc. Peaks and valleys are extracted from the preprocessed load spectrum. Based on the graphic method and the estimator stabilization method, the upper and lower thresholds of the time domain extrapolation of the load spectrum are determined, and then the peaks and valleys excesses that exceed the upper and lower thresholds are extracted. The generalized pareto distribution function is used to fit the distribution of peaks and valleys excesses.
Technical Paper

A Method for Calculating High Frequency Dynamic Characteristics of Rubber Isolators under Different Preloads

2022-03-29
2022-01-0307
Because the power unit of electric vehicle has large torque, the rubber mount of electric vehicle is fully compressed under the condition of full throttle acceleration. When designing the mount of electric vehicle, the dynamic-to-static stiffness ratio of mount under the case should be as low as possible to improve the vibration isolation rate of the mount. In this paper, a method for calculating the high frequency dynamic characteristics of rubber isolators under different preloads is presented. Firstly, the dynamic characteristics of rubber specimens under various shear pre-strains were tested. The test results show that the dynamic stiffness of specimen decreases at first and then increases with the increase of shear strain. The viscoelastic parameters of rubber in frequency domain under different pre-strain were identified according to the experimental data. Secondly, a finite element modeling method was proposed.
Technical Paper

A Method for Identifying Tortuosity, Viscous Characteristic Length and Thermal Characteristic Length of Kapok Mixed Fiber Porous Materials

2023-05-08
2023-01-1058
Tortuosity, viscous characteristic length and thermal characteristic length are three important parameters for estimating the acoustic performance of porous materials, and it is usually measured by ultrasonic measurement technology, which is costly. In this paper, a method for identifying the tortuosity, viscous characteristic length and thermal characteristic length for the porous fiber materials mixed with kapok fiber and two kinds of other fiber materials is proposed. The tortuosity is calculated by using the porosity and high-frequency normal sound absorption coefficient of porous materials. According to the normal sound absorption coefficient curve of porous materials under plane wave incidence, viscous characteristic length and thermal characteristic length are identified through the Johnson-Champoux-Allard-Lafarge (JCAL) model and genetic algorithm by using the measured parameters, the calculated tortuosity and static thermal permeability.
Technical Paper

A Method for Predicting Fatigue Life of Rubber Isolators at Power Spectral Density Load

2024-04-09
2024-01-2261
Rubber isolators are widely used under random vibrations. In order to predict their fatigue life, a study on the fatigue analysis methodology for rubber isolators is carried out in this paper. Firstly, taking a mount used for isolating air conditioning compressor vibrations as studying example, accelerations versus time of rubber isolator at both sides are acquired for a car under different running conditions. The acceleration in time domain is transformed to frequency domain using the Fourier transform, and the acceleration power spectral density (PSD) is the obtained. Using the PSD as input, fatigue test is carried for the rubber isolator in different temperature and constant humidity conditions. A finite element model of the rubber isolator using ABAQUS is established for estimating fatigue life, and model validity is verified through static characteristic testing. Dynamic responses of the rubber isolator at frequency domain are calculated if a unit load is applied.
Technical Paper

A Modeling and Analysis Method of Dynamic Contact Stress Inside an Automotive Ball Joint

2021-04-06
2021-01-0708
A ball joint is an important component of the automotive drive shaft system, as well the contact stress inside the ball joint is an important optimization goal in the design of ball joints. At present, the analysis of the contact stress inside the ball joint mainly focuses on the static contact stress analysis. The static contact stress analysis, however, cannot reflect the change of the contact stress inside the ball joint. In order to analyze the contact stress of the ball joint more effectively, a hybrid flexible and rigid bodies dynamics (HFRBD) model of the ball joint for studying the dynamic contact stress inside the ball joint is proposed. In the HFRBD model, the balls are regarded as the rigid body, while the cage, the inner race and the outer race are regarded as the flexible body. The contact parameters of the contact pairs in the model are determined on the basis of Hertz contact theory.
Journal Article

A New Semi-Empirical Method for Estimating Tire Combined Slip Forces and Moments during Handling Maneuvers

2015-07-01
2015-01-9112
Modeling the tire forces and moments (F&M) generation, during combined slip maneuvers, which involves cornering and braking/driving at the same time, is essential for the predictive vehicle performance analysis. In this study, a new semi-empirical method is introduced to estimate the tire combined slip F&M characteristics based on flat belt testing machine measurement data. This model is intended to be used in the virtual tire design optimization process. Therefore, it should include high accuracy, ease of parameterization, and fast computational time. Regression is used to convert measured F&M into pure slip multi-dimensional interpolant functions modified by weighting functions. Accurate combined slip F&M predictions are created by modifying pure slip F&M with empirically determined shape functions. Transient effects are reproduced using standard relaxation length equations. The model calculates F&M at the center of the contact patch.
Journal Article

A Novel Pressure-Feedback Based Adaptive Control Method to Damp Instabilities in Hydraulic Machines

2012-09-24
2012-01-2035
Excessive vibration and poor controllability occur in many mobile fluid power applications, with negative consequences as concerns operators' health and comfort as well as machine safety and productivity. This paper addresses the problem of reducing oscillations in fluid power machines presenting a novel control technique of general applicability. Strong nonlinearities of hydraulic systems and the unpredictable operating conditions of the specific application (e.g. uneven ground, varying loads, etc.) are the main challenges to the development of satisfactory general vibration damping methods. The state of the art methods are typically designed as a function of the specific application, and in many cases they introduce energy dissipation and/or system slowdown. This paper contributes to this research by introducing an energy efficient active damping method based on feedback signals from pressure sensors mounted on the flow control valve block.
Technical Paper

A Novel Suspended Liner Test Apparatus for Friction and Side Force Measurement with Corresponding Modeling

2006-11-13
2006-32-0041
An experimental apparatus and a numerical model have been designed and developed to examine the lubrication condition and frictional losses at the piston and cylinder interface. The experimental apparatus utilizes components from a single cylinder, ten horsepower engine in a novel suspended liner arrangement. The test rig has been specifically designed to reduce the number of operating variables while utilizing actual components and geometry. A mixed lubrication model for the complete ring-pack and piston skirt was developed to correlate with experimental measurements and provide further insight into the sources of frictional losses. The results demonstrate the effects of speed and viscosity on the overall friction losses at the piston and cylinder liner interface. Comparisons between the experimental and analytical results show good agreement.
Journal Article

A Numerical Investigation of Ignition of Ultra-Lean Premixed H2/Air Mixtures by Pre-Chamber Supersonic Hot Jet

2017-10-05
2017-01-9284
Gas engines often utilize a small-volume pre-chamber in which fuel is injected at near stoichiometric condition to produce a hot turbulent jet which then ignites the lean mixture in the main chamber. Hot jet ignition has several advantages over traditional spark ignition, e.g., more reliable ignition of extra-lean mixtures and more surface area for ignition resulting in faster burning and improved combustion burn time. Our previous experimental results show that supersonic jets could extend the lean flammability limit of fuel/air mixtures in the main chamber in comparison to subsonic jets. The present paper investigated the characteristics of supersonic hot jets generated by combustion of stoichiometric H2/air in a pre-chamber to understand the ignition mechanism of ultra-lean mixtures by supersonic hot jets.
Technical Paper

A Photostress Study of Spur Gear Teeth

1967-05-15
670503
An experimental-analytic method of determining the stress distribution in narrow faced spur gear teeth is presented. The successful application of photostress to this contact problem is reported. It utilizes a digital computer routine developed for separating stresses in any general two-dimensional region. Results for two pairs of gears are presented. Comparison is made with values predicted by the modified Lewis formula, the Kelley and Pedersen equation, and by the Belajef solution of the Hertz contact problem for two cylinders.
Technical Paper

A Research on Modeling and Pressure Control of Integrated Electro-Hydraulic Brake System

2021-04-06
2021-01-0130
A fourth-order mathematical model for I-EHB (integrated electro-hydraulic brake) system was derived from its mechanical and hydraulic subsystems. The model was linearized at equilibrium state and then was verified by AMESIM software. The friction model of the system was analyzed based on static friction and viscous friction. A bench test was designed to identify the parameters of friction model. As the I-EHB system worked at different braking conditions, a PID-based switching controller was designed to track the target servo cylinder pressure. Both simulations and experiments results showed that, the response time of pressure was less than 120ms, and there was no overshoot, which helped handling different braking conditions and improving the braking safety and comfort.
Technical Paper

A Review of Lattice Boltzmann Methods for Multiphase Flows Relevant to Engine Sprays

2005-04-11
2005-01-0996
This paper reviews some applications of lattice Boltzmann methods (LBM) to compute multiphase flows. The method is based on the solution of a kinetic equation which describes the evolution of the distribution of the population of particles whose collective behavior reproduces fluid behavior. The distribution is modified by particle streaming and collisions on a lattice. Modeling of physics at a mesoscopic level enables LBM to naturally incorporate physical properties needed to compute complex flows. In multiphase flows, the surface tension and phase segregation are incorporated by considering intermolecular attraction forces. Furthermore, the solution of the kinetic equations representing linear advection and collision, in which non-linearity is lumped locally, makes it parallelizable with relative ease. In this paper, a brief review of the lattice Boltzmann method relevant to engine sprays will be presented.
Technical Paper

A Simulation Model for a Tandem External Gear Pump for Automotive Transmission

2018-04-03
2018-01-0403
This paper describes a simulation approach for the modeling of tandem external gear pumps. A tandem gear pump is the combination of two pumps with a common drive shaft. Such design architecture finds application in certain automotive transmission systems. The model presented in this work is applicable for pumps with both helical and spur gears. The simulation model is built on the HYGESim (HYdraulic GEars machines Simulator) previously developed by the authors for external spur gear units. In this work, the model formulation is properly extended to the capabilities of simulating helical gears. Starting directly from the CAD drawings of the unit, the fluid-dynamic model solves the internal instantaneous tooth space volume pressures and the internal flows following a lumped parameter approach. The simulation tool considers also the radial micro-motion of the gears, which influences the internal leakages and the features of the meshing process.
Technical Paper

A Simulation-Based Study on the Improvement of Semi-Truck Roll Stability in Roundabouts

2016-09-27
2016-01-8038
This paper studies the effect of different longitudinal load conditions, roundabout cross-sectional geometry, and different semi-truck pneumatic suspension systems on roll stability in roundabouts, which have become more and more popular in urban settings. Roundabouts are commonly designed in their size and form to accommodate articulated heavy vehicles (AHVs) by evaluating such affects as off-tracking. However, the effect of the roadway geometry in roundabouts on the roll dynamics of semi-tractors and trailers are equally important, along with their entry and exit configuration. , Because the effect of the roundabout on the dynamics of trucks is further removed from the immediate issues considered by roadway planner, at times they are not given as much consideration as other roadway design factors.
X