Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A Method for Identifying Most Significant Vehicle Parameters for Controller Performance of Autonomous Driving Functions

2019-04-02
2019-01-0446
In this paper a method for the identification of most significant vehicle parameters influencing the behavior of a lateral control system of autonomous car is presented. Requirements for the design stage of the controller need to consider many uncertainties in the plant. While most vehicle properties can be compensated by an appropriate tuning of the control parameters, other vehicle properties can change significantly during usage. The control system is evaluated based on performance measures. Analyzed parameters comprise functional tire characteristics, mass of the vehicle and position of its center of gravity. Since the parameters are correlated, but Sobol’ sensitivity analysis assumes decorrelated inputs, random variation yields no reasonable results. Furthermore, the variation of each parameter or set of parameters is not applicable since the numbers of required simulations is increased significantly according to input dimension.
Technical Paper

A Modular Methodology for Complete Vehicle Thermal Management Simulations

2022-08-30
2022-01-5064
Vehicle thermal management (VTM) simulations are becoming increasingly important in the development phase of a vehicle. These simulations help in predicting the thermal profiles of critical components over a drive cycle. They are usually done using two methodologies: (1) Solving every aspect of the heat transfer, i.e., convection, radiation, and conduction, in a single solver (Conjugate Heat Transfer) or (2) Simulating convection using a fluid solver and computing the other two mechanisms using a separate thermal solver (Co-simulation). The first method is usually computationally intensive, while the second one isn’t. This is because Co-simulation reduces the load of simulating all heat transfer mechanisms in a single code. This is one of the reasons why the Co-simulation method is widely used in the automotive industry. Traditionally, the methods developed for Co-simulation processes are load case specific.
Technical Paper

A New Approach to Model the Fan in Vehicle Thermal Management Simulations

2019-02-25
2019-01-5016
Vehicle thermal management (VTM) simulations constitute an important step in the early development phase of a vehicle. They help in predicting the temperature profiles of critical components over a drive cycle and identify components which are exceeding temperature design limits. Parts with the highest temperatures in a vehicle with an internal combustion engine are concentrated in the engine bay area. As packaging constraints grow tighter, the components in the engine bay are packed closer together. This makes the thermal protection in the engine bay even more crucial. The fan influences the airflow into the engine bay and plays an important role in deciding flow distribution in this region. This makes modelling of the fan an important aspect of VTM simulations. The challenge associated with modelling the fan is the accurate simulation of the rotation imparted by the fan to the incoming flow. Currently, two modelling approaches are prevalent in the industry.
Technical Paper

A Two-Measurement Correction for the Effects of a Pressure Gradient on Automotive, Open-Jet, Wind Tunnel Measurements

2006-04-03
2006-01-0568
This paper provides a method that corrects errors induced by the empty-tunnel pressure distribution in the aerodynamic forces and moments measured on an automobile in a wind tunnel. The errors are a result of wake distortion caused by the gradient in pressure over the wake. The method is applicable to open-jet and closed-wall wind tunnels. However, the primary focus is on the open tunnel because its short test-section length commonly results in this wake interference. The work is a continuation of a previous paper [4] that treated drag only at zero yaw angle. The current paper extends the correction to the remaining forces, moments and model surface pressures at all yaw angles. It is shown that the use of a second measurement in the wind tunnel, made with a perturbed pressure distribution, provides sufficient information for an accurate correction. The perturbation in pressure distribution can be achieved by extending flaps into the collector flow.
Technical Paper

A Virtual Residual Gas Sensor to Enable Modeling of the Air Charge

2016-04-05
2016-01-0626
Air charge calibration of turbocharged SI gasoline engines with both variable inlet valve lift and variable inlet and exhaust valve opening angle has to be very accurate and needs a high number of measurements. In particular, the modeling of the transition area from unthrottled, inlet valve controlled resp. throttled mode to turbocharged mode, suffers from small number of measurements (e.g. when applying Design of Experiments (DoE)). This is due to the strong impact of residual gas respectively scavenging dominating locally in this area. In this article, a virtual residual gas sensor in order to enable black-box-modeling of the air charge is presented. The sensor is a multilayer perceptron artificial neural network. Amongst others, the physically calculated air mass is used as training data for the artificial neural network.
Journal Article

Achieving a Scalable E/E-Architecture Using AUTOSAR and Virtualization

2013-04-08
2013-01-1399
Today's automotive software integration is a static process. Hardware and software form a fixed package and thus hinder the integration of new electric and electronic features once the specification has been completed. Usually software components assigned to an ECU cannot be easily transferred to other devices after they have been deployed. The main reasons are high system configuration and integration complexity, although shifting functions from one to another ECU is a feature which is generally supported by AUTOSAR. The concept of a Virtual Functional Bus allows a strict separation between applications and infrastructure and avoids source code modifications. But still further tooling is needed to reconfigure the AUTOSAR Basic Software (BSW). Other challenges for AUTOSAR are mixed integrity, versioning and multi-core support. The upcoming BMW E/E-domain oriented architecture will require all these features to be scalable across all vehicle model ranges.
Technical Paper

Advance simulation method for aero-acoustic vehicle design

2024-06-12
2024-01-2938
With the electrification of powertrains, the noise level inside vehicles reach high levels of silence. The dominant engine noise found in traditional vehicles is now replaced by other sources of noise such as rolling noise and aeroacoustic noise. These noises are encountered during driving on roads and highways and can cause significant fatigue during long journeys. Regarding aeroacoustic phenomena, the noise transmitted into the cabin is the result of both turbulent pressure and acoustic pressure created by the airflow. Even though it is lower in level, the acoustic pressure induces most of the noise perceived by the occupants. Its wavelength is closer to the characteristic vibration wavelengths of the glass, making its propagation more efficient through the vehicle's windows. The accurate modeling of these phenomena requires the coupling of high-frequency computational fluid dynamics (CFD) simulations and vibro-acoustic simulations.
Technical Paper

Advanced Onboard Fuel Processor for PEM Fuel Cell Vehicles

2006-04-03
2006-01-0216
To reduce greenhouse gas emissions such as CO2, automakers are actively pursuing alternative propulsion systems. Improvements to current engine technology are being investigated along with new power plant technologies. Fuel Cell Vehicles offer an exciting option by producing electric power through a reaction that combines hydrogen and oxygen to make water. However, hydrogen storage onboard vehicles and construction of an expensive hydrogen distribution and fueling infrastructure remain as challenges today. In addition, greenhouse gas emissions from the production of hydrogen must be considered since most hydrogen is currently produced from non-renewable sources. While these issues are being worked on, Renault has chosen to pursue a fuel cell vehicle with a fuel processor that converts gasoline and other liquid fuels to hydrogen onboard the vehicle.
Technical Paper

Air Quality and Odors Evaluation for Passengers Compartment

1995-02-01
950016
The paper presents the VALEO and RENAULT approach to study odor problems for passengers compartment. The first part describes the method chosen to form a panel, and the second part presents a vehicle application.
Technical Paper

Analysis of Systematic Calibration of Heat Transfer Models on a Turbocharged GDI Engine Operating Map

2018-04-03
2018-01-0787
In order to simulate the working process, an accurate description of heat transfer occurring between in-cylinder gases and combustion chamber walls is required, especially regarding thermal efficiency, combustion and emissions, or cooling strategies. Combustion chamber wall heat transfer models are dominated by zero-dimensional semi-empirical models due to their good compromise between accuracy, complexity and computational efficiency. Classic models such as those from Woschni, Annand or Hohenberg are still widely used, despite having been developed on rather ancient engines. While numerous authors have worked on this topic in the past decades, little information can be found concerning the systematic calibration process of heat transfer models. In this paper, a systematic calibration method based on experimental data processing is tested on the complete operating map of a turbocharged GDI engine.
Technical Paper

Application and Evaluation of the Eulerian-Lagrangian Spray Atomization (ELSA) Model on CFD Diesel Spray Simulations

2011-06-09
2011-37-0029
During the last fifteen years, Computational Fluid Dynamics (CFD) has become one of the most important tools to both understand and improve the diesel spray development in Internal Combustion Engine (ICE). Most of the approaches and models used pure Eulerian or Lagrangian descriptions to simulate the spray behavior. However, each one of them has both advantages and disadvantages in different regions of the spray, it can be the dense zone or the downstream dilute zone. One of the most promising techniques, which has been in development since ten years ago, is the Eulerian-Lagrangian Spray Atomization (ELSA) model. This is an integrated model for capturing the whole spray evolution, including primary break-up and secondary atomization. In this paper, the ELSA numerical modeling of diesel sprays implementation in Star-CD (2010) is studied, and simulated in comparison with the diesel spray which has been experimentally studied in our institute, CMT-Motores Térmicos.
Video

BMW Technology/Strategy Regarding EV

2011-11-04
The BMW Group has introduced electric cars to the market with the MINI E already in 2009. The next step will be the launch of the BMW ActiveE in 2011, followed by the revolutionary Mega City Vehicle in 2013. The presentation will explain the BMW Group strategy for implementing sustainable mobility. A focus will be emobility, the use of carbon fiber and the holistic sustainability approach of BMW Group?s project i. Reference will be made to the research results of the MINI E projects in the US and in Europe. Presenter Andreas Klugescheid, BMW AG
Technical Paper

Calculation Process with Lattice Boltzmann and Finite Element Methods to Choose the Best Exterior Design for Wind Noise

2019-06-05
2019-01-1471
Wind noise in automobile is becoming more and more important as the customer expectations increase. On the other hand, great progress has been made on engine and road noises, especially for electric and hybrid vehicles. Thus, the wind noise is now by far the major acoustic source during road and motorway driving. As for other noises, automobile manufacturers must be able, for a new car project, to specify, calculate and measure each step of the acoustic cascading: Source Transfers, both solid and air borne In the case of the automotive wind noise, the excitation source is the dynamic pressure on the vehicle’s panels. This part of the cascading is the one influenced by the exterior design. Even if many others components (panels, seals, cabin trims) have a big influence, the exterior design is a major issue for the wind noise. The wind noise level in the cabin may change significantly with only a small modification of the exterior design.
Technical Paper

Communication and Information Systems - A Comparison of Ideas, Concepts and Products

2000-03-06
2000-01-0810
How can car manufacturers, which are primary mechanical engineers, become software specialists? This is a question of prime importance for car electronics in the future. Modern vehicles offer a large number of electronic and software based functions to achieve a high level of safety, fuel economy, comfort, entertainment and security which are developed under pressure of regulations, of consumers needs and of competitive time to market aspects. This contribution draws a picture, what could be important in future for in car communication and information system in terms of development process, HW & SW architectures, partnerships in automotive industry and security of industrial properties. For this purpose the automotive development is reviewed and actual examples of system designs are given.
Technical Paper

Comprehensive Approach for the Chassis Control Development

2006-04-03
2006-01-1280
Handling characteristics, ride comfort and active safety are customer relevant attributes of modern premium vehicles. Electronic control units offer new possibilities to optimize vehicle performance with respect to these goals. The integration of multiple control systems, each with its own focus, leads to a high complexity. BMW and ITK Engineering have created a tool to tackle this challenge. A simulation environment to cover all development stages has been developed. Various levels of complexity are addressed by a scalable simulation model and functionality, which grows step-by-step with increasing requirements. The simulation environment ensures the coherence of the vehicle data and simulation method for development of the electronic systems. The article describes both the process of the electronic control unit (ECU) development and positive impact of an integrated tool on the entire vehicle development process.
Technical Paper

Compressor Efficiency Extrapolation for 0D-1D Engine Simulations

2016-04-05
2016-01-0554
0D-1D codes allow researchers to obtain a prediction of the behavior of internal combustion engines with little computational effort. One of the submodels of such codes is devoted to the centrifugal compressor. This model is often based on the compressor performance maps, therefore requiring the extrapolation of the maps so that all possible operating conditions are covered. Particularly, a suitable extrapolation of isentropic efficiency map is sought. This work first examines different available methods for compressor efficiency extrapolation into off-design conditions. No method is found to provide satisfactory results at all extrapolated regions: low and high compressor speeds and low compression ratio at measured speeds. Hence, a new method is proposed and its accuracy is assessed with the aid of compressor off-design measurements.
Journal Article

Computational Fluid Dynamics Calculations of Turbocharger's Bearing Losses

2010-05-05
2010-01-1537
Fuel consumption in internal combustion engines and their associated CO2 emissions have become one of the major issues facing car manufacturers everyday for various reasons: the Kyoto protocol, the upcoming European regulation concerning CO2 emissions requiring emissions of less than 130g CO2/km before 2012, and customer demand. One of the most efficient solutions to reduce fuel consumption is to downsize the engine and increase its specific power and torque by using turbochargers. The engine and the turbocharger have to be chosen carefully and be finely tuned. It is essential to understand and characterise the turbocharger's behaviour precisely and on its whole operating range, especially at low engine speeds. The characteristics at low speed are not provided by manufacturers of turbochargers because compressor maps cannot be achieve on usual test bench.
Technical Paper

Considerations Implementing a Dual Voltage Power Network

1998-10-19
98C008
Innovative electric systems demand a new approach for the distribution of electric energy in passenger cars. This paper describes a very promising solution-the dual voltage power network with an upper voltage level of 42V, and the considerations which led to the selection of this voltage level. Owing to the significant impact on the industry, a common standard is required. Depending on their profile, OEMs will select their own strategies for implementation, either as a base for innovation or to enhance overall system efficiency. This will lead to different approaches and timeframes.
Technical Paper

Coupled Fluid-Solid Simulation for the Prediction of Gas-Exposed Surface Temperature Distribution in a SI Engine

2017-03-28
2017-01-0669
The current trend of downsizing used in gasoline engines, while reducing fuel consumption and CO2 emissions, imposes severe thermal loads inside the combustion chamber. These critical thermodynamic conditions lead to the possible auto-ignition (AI) of fresh gases hot-spots around Top-Dead-Center (TDC). At this very moment where the surface to volume ratio is high, wall heat transfer influences the temperature field inside the combustion chamber. The use of a realistic wall temperature distribution becomes important in the case of a downsized engine where fresh gases hot spots found near high temperature walls can initiate auto-ignition. This paper presents a comprehensive numerical methodology for an accurately prediction of thermodynamic conditions inside the combustion chamber based on Conjugate Heat Transfer (CHT).
Technical Paper

Data Reduction in Automotive Multiplex Systems

1994-03-01
940135
Increasing demand for utilities like navigation systems or user-defined electronic phonebooks on one hand and sophisticated engine and gear controls on the other hand leads to growing bus load between distributed local control units. This paper shows the benefits and the characteristics of various state of the art data-compression algorithms and their impact on typical automotive multiplex dataclasses. The evaluation and optimization of promising algorithms can be done via a proposed “communications prototyping”-approach. The hardware/software components of such a rapid prototyping package are outlined. Finally, first performance results of suitable data-compression measures are presented.
X