Refine Your Search

Topic

Search Results

Technical Paper

A Validated Numerical Simulation of Diesel Injector Flow Using a VOF Method

2000-10-16
2000-01-2932
Progress in Diesel spray modelling highly depends on a better knowledge of the instantaneous injection velocity and of the hydraulic section at the exit of each injection hole. Additionally a better identification of the mechanisms which cause fragmentation is needed. This necessitates to begin with a precise computation of the two-phase flow which arises due to the presence of cavitation within the injectors. For that aim, a VOF type interface tracking method has been developed and improved (Segment Lagrangian VOF method) which allows to describe numerically the onset and development of cavitation within Diesel injectors. Furthermore, experiments have been performed for validation purpose, on transparent one-hole injectors for high pressure injection conditions. Two different entrance geometries (straight and rounded) and various upstream and downstream pressure levels have been considered.
Technical Paper

Advance simulation method for aero-acoustic vehicle design

2024-06-12
2024-01-2938
With the electrification of powertrains, the noise level inside vehicles reach high levels of silence. The dominant engine noise found in traditional vehicles is now replaced by other sources of noise such as rolling noise and aeroacoustic noise. These noises are encountered during driving on roads and highways and can cause significant fatigue during long journeys. Regarding aeroacoustic phenomena, the noise transmitted into the cabin is the result of both turbulent pressure and acoustic pressure created by the airflow. Even though it is lower in level, the acoustic pressure induces most of the noise perceived by the occupants. Its wavelength is closer to the characteristic vibration wavelengths of the glass, making its propagation more efficient through the vehicle's windows. The accurate modeling of these phenomena requires the coupling of high-frequency computational fluid dynamics (CFD) simulations and vibro-acoustic simulations.
Technical Paper

Aero-Acoustic Predictions of Automotive Instrument Panel Ducts

2009-05-19
2009-01-2237
The air noise generated by automotive climate control systems is today emerging as one of the main noise sources in a vehicle interior. In the confined instrument panel (I.P.) ducts, that lead the air flow from the HVAC outlets to the cabin, the highly constrained geometry generally leads to flow separation and to complex flow structures that contribute to the noise perceived in the car. Numerical simulation offers a good way to analyze these mechanisms and to identify the aerodynamic noise sources, in an industrial context driven by permanent reduction of programs timing and development costs, implying no physical prototype of ducts before serial tooling. This paper presents an example of aero-acoustic study of simple I.P. ducts performed with the finite element code ACTRAN to estimate the sound produced by the turbulent flow. For this type of configuration, the acoustic propagation is decoupled from the noise generation mechanism that is essentially of aerodynamic nature.
Technical Paper

An Investigation into the Influence of LPG (Autogas) Composition on the Exhaust Emissions and Fuel Consumption of 3 Bi-Fuelled Renault Vehicles

1996-05-01
961170
Studies using a bi-fuelled (autogas/gasoline) Renault Laguna vehicle meeting °the 1996 European exhaust emission legislation has demonstrated that over the European test cycle at 25°C the LPG operated vehicle provides substantial benefits of reduced emissions compared to unleaded reference gasoline. At lower test temperatures (i.e. 5°C) even larger reduction in emissions have been observed. Lower CO (up to 95% at -5°C and 65% at 25°C), HC (90% at -5°C and 40% at 25°C) emissions and lower ozone HC reactivity have been observed and could all offer significant environmental air-quality benefits for LPG. Various autogas mixtures have been tested including 70/30, 30/70 and 49/30/21 (% mass propane / butane / propene). Results show that NOx emissions for this vehicle appear dependent on autogas composition. The two gas mixtures containing only 30% butane gave about 50% more NOx at +25°C than the 70% butane autogas mixture.
Technical Paper

Calculation Process with Lattice Boltzmann and Finite Element Methods to Choose the Best Exterior Design for Wind Noise

2019-06-05
2019-01-1471
Wind noise in automobile is becoming more and more important as the customer expectations increase. On the other hand, great progress has been made on engine and road noises, especially for electric and hybrid vehicles. Thus, the wind noise is now by far the major acoustic source during road and motorway driving. As for other noises, automobile manufacturers must be able, for a new car project, to specify, calculate and measure each step of the acoustic cascading: Source Transfers, both solid and air borne In the case of the automotive wind noise, the excitation source is the dynamic pressure on the vehicle’s panels. This part of the cascading is the one influenced by the exterior design. Even if many others components (panels, seals, cabin trims) have a big influence, the exterior design is a major issue for the wind noise. The wind noise level in the cabin may change significantly with only a small modification of the exterior design.
Technical Paper

Effect of Flow Distribution on Emissions Performance of Catalytic Converters

1998-02-23
980936
The emissions performance of catalytic converters under different conditions of flow distribution was investigated. Computational Fluid Dynamics methods were utilised to model the maldistribution effects of different inlet cones. The effects of maldistribution on ageing, light-off and conversion were investigated using steady state tests on an engine bench. Emission testing was also conducted on a vehicle throughout ECE and EUDC test cycles. Maldistribution was found to have a significant effect on the efficiency of the catalyst during the early stages of the ECE cycle for both fresh and aged catalysts. The effects were less significant over later stages of the ECE cycle and throughout the EUDC except NOx where maldistribution did have an effect on the conversion at higher flow rates during the later stages of the test.
Technical Paper

Efficient Prediction and Analysis of the Noise Radiated by an Electric Powertrain

2022-06-15
2022-01-0931
Reducing the emitted noise from vehicles is a primary issue for automotive OEMs due to the constant evolution of the noise regulations. In the context of electric powertrains, virtual prototyping has proven to be a cost-efficient alternative to the build-test process, especially in early design stage and/or if optimization is targeted. Due to the multiphysics nature of the model, the full simulation chain involves multiple components, each having its own specific modelling attributes. The difficulty then resides in the parts assembly, solving issues like mesh-to-mesh projections, time to frequency-domain transformation, 2d-axisymmetric to 3d mapping, data formatting and management, unit and local coordinate systems… This paper presents an environment that allows for the prediction and analysis of the noise radiated by electric automotive powertrains. The stator-rotor electro-magnetic behavior is represented by time-dependent forces applied on stator teeth.
Journal Article

Evaluation of Trim Absorption to Exterior Dynamic and Acoustic Excitations Using a Hybrid Physical-Modal Approach

2014-06-30
2014-01-2080
The NVH study of trimmed vehicle body is essential in improving the passenger comfort and optimizing the vehicle weight. Efficient modal finite-element approaches are widely used in the automotive industry for investigating the frequency response of large vibro-acoustic systems involving a body structure coupled to an acoustic cavity. In order to accurately account for the localized and frequency-dependant damping mechanism of the trim components, a direct physical approach is however preferred. Thus, a hybrid modal-physical approach combines both efficiency and accuracy for large trimmed body analysis. Dynamic loads and exterior acoustic loads can then be applied on the trimmed body model in order to evaluate the transfer functions between these loads and the acoustic response in the car compartment.
Technical Paper

Impact of Sulfur on NOx Trap Catalyst Activity - Study of the Regeneration Conditions

1998-10-19
982607
Laboratory and engine tests were carried out to describe the sulphur effect on the NOx adsorbers catalysts efficiency for gasoline lean burn engines. Two main aspects were studied. The first one deals with the NOx storage efficiency of the adsorber under laboratory conditions, especially regarding the SO2 gas phase concentration. The rate of sulfur storing is greatly affected by the SO2 gas concentration. While 6.5 hours are required to get from 70 % NOx reduction to only 35 % when the gas mixture contains 10 ppm SO2, it takes 20 hours with 5 ppm SO2 and more than 60 hours with the 2 ppm SO2 condition. The relationship between the loss in NOx trap performance and SO2 concentration appears to have an exponential shape. The same amount of sulphur (0.8 % mass) is deposited onto the catalyst within 10 hours with the feed gas containing 10 ppm of SO2 and within 50 hours with 2 ppm SO2. Nevertheless, It was shown that the loss in NOx-Trap efficiency is not the same in these two cases.
Technical Paper

Impact of Sulphur on the NOx Trap Catalyst Activity-Poisoning and Regeneration Behaviour

2000-06-19
2000-01-1874
This presented paper deals with NOx trap sulphur poisoning and its regeneration. Sulphur poisoning has been studied with different SO2 gas concentrations under laboratory and engine test bench conditions. The sulphur poisoning studies have shown that the different NOx-traps available in the market have different behaviours toward SO2 poisoning and are all very sensitive to it. The results outline a non linear relationship of the NOx trap sulphur poisoning as a function of SO2 concentration. For instance, engine bench tests show that with a 50 and a 110ppm sulphur containing gasoline, a decrease of 50% in the NOx-trap storage capacity is respectively observed after 20 and 15 hours. With a gasoline containing 20ppm of sulphur, the same deactivation level is observed after 90 hours.
Technical Paper

Influence of Both Catalyst Geometry and Fuel Sulfur Content on NOX Adsorber Poisoning

2001-05-07
2001-01-1934
NOx adsorbers are very sensitive to sulfur poisoning and future fuel standards are unlikely to be sufficient to prevent the system from requiring periodic desulfation procedures. The purpose of this paper is to present the effects of low fuel sulfur content such as 50 ppm and 10 ppm on the NOx adsorber efficiency for a diesel application. Through this study, the influence of the substrate cell geometry has also been assessed. The use of a 10 ppm sulfur fuel is not enough to maintain, at a high level, the NOx adsorber performance during a 40,000 km aging test. The desulfation criterion (efficiency loss of 30%) is reached after the first 16,000 km. However, the desulfation operation is not enough to recover the initial catalyst performance and the poisoning velocity increases as the catalyst ages. The hexagonal cell substrate catalyst is less sensitive to sulfur poisoning than a square cell substrate catalyst so that its desulfation frequency is much lower.
Technical Paper

Investigation of Gravel Noise Mechanisms and Impact Noise Transfer

2007-05-15
2007-01-2274
Impact noise, inside a car, due to tire-launched gravel on the road can lead to loss of quality perception. Gravel noise is mainly caused by small-sized particles which are too small to be seen on the road by the driver. The investigation focuses on the identification of the mechanisms of excitation and transfer. The spatial distribution of the particles flying from a tire is determined, as well as the probable impact locations on the vehicle body-panels. Finally the relative noise contributions of the body-panels are estimated by adding the panel-to-ear transfer functions. This form of Transfer-Path-Analysis allows vehicle optimization and target setting on the level of the tires, exterior panel treatment and isolation.
Technical Paper

Non-Thermal Plasma Assisted Catalytic NOx Remediation from a Lean Model Exhaust

2001-09-24
2001-01-3508
No efficient catalyst presently exists for deNOx in lean burn conditions. Furthermore, actual catalysts generally deactivate during reaction. A cylindrical DBD non-thermal plasma reactor was coupled with a stable three-function catalyst in order to verify the nature of the effect of the plasma on the catalytic process. A mixture of NO/O2/C3H6 in N2 was used as a lean model exhaust. The plasma was found to perform two of the three functions: NO oxidation to NO2 and propene activation through the partial oxidation of the hydrocarbon to aldehyde or alcohol. A complete catalyst containing the first two previous functions and the associative chemisorption of NO (third function) was used, as well as a simplified catalyst containing only the third function. Results suggest an advantageous plasma-catalyst coupling effect on NOx remediation in accordance with the proposed catalytic model.
Technical Paper

Numerical Simulation of Noise Transmission from A-pillar Induced Turbulence into a Simplified Car Cabin

2015-06-15
2015-01-2322
At high cruising speed, the car A-pillars generate turbulent air flow around the vehicle. The resulting aerodynamic pressure applied on the windows significantly contributes to the total cabin noise. In order to predict this particular noise contribution, the physic of both the flow and the cabin needs to be accurately modeled. This paper presents an efficient methodology to predict the turbulent noise transmission through the car windows. The method relies on a two-step approach: the first step is the computation of the exterior aero-dynamic field using an unsteady CFD solver (PowerFLOW); the second step consists in the computation of the acoustic propagation inside the cabin using a finite element vibro-acoustic solver (ACTRAN). The simplified car cabin of Hyundai Motor Company, studied in this paper, involves aluminum skin, windows, sealant, inner air cavity and acoustic treatment inside the passenger compartment (porous material, damping layer).
Technical Paper

Optimization of Trim Component and Reduction of the Road Noise Transmission Based on Finite Element Methods

2018-06-13
2018-01-1547
The acoustic trim components play an essential role in NVH behavior by reducing both the structure borne and airborne noise transmission while participating to the absorption inside the car. Over the past years, the interest for numerical solutions to predict the noise transmission through trim packages has grown, leading to the development of dedicated CAE tools. The incrementally restrictive weight and space constraints force today CAE engineers to seek for optimized trim package solution. This paper presents a two-steps process which aims to reduce the structure borne road noise due to floor panel using a coupled simulation with MSC NASTRAN and Actran. The embossment of the supporting steel structure, the material properties of porous layers and the thickness of visco-elastic patches are the design variables of the optimization process.
Technical Paper

Reconstruction of a Vibration Field from Acoustical Measurements: A New Inverse Method Based on the Concept of Pellicular Acoustic Modes

2009-05-19
2009-01-2209
This paper describes a new approach for performing indirect vibration measurements using acoustic measurements and an inverse calculation procedure based on a finite element model and a new type of hierarchical basis (so-called pellicular modes) for representing the unknown vibration field. The paper first presents the theory of the method. A parametric study on a simple test case then highlights the effect of the number of microphones and of the background noise level on the quality of the reconstruction of the vibration pattern. The application to a real set of acoustic data on a section of an ATR regional aircraft is then provided.
Technical Paper

Robust Design of Acoustic Treatments for Powertrain Noise Radiation

2018-06-13
2018-01-1486
The reduction of the emitted noise from vehicles is a primary issue for automotive OEM’s due to the constant evolution of the noise regulations. As the noise generated by the powertrain remains one of the major noise sources at low/mid vehicle velocities, focus is set on efficient methods to control this source. Acoustic treatments and covers, made of multi-layered trimmed panels, are frequently selected to control the radiated sound and its directivity. In this context, numerical acoustic simulation is an attractive approach as efficient methodologies are available to study the acoustic radiation of powertrain units in working conditions (up to 6500 RPM nd frequencies up to 4 kHz). Moreover, handling acoustically-treated covers in such simulations has a low impact on the computational cost.
Technical Paper

System Approach for NOx Reduction: Double LNT Diesel After-Treatment Architecture

2011-04-12
2011-01-1300
This paper presents an after-treatment architecture combining a close coupled NOx trap and an under floor NOx trap. Instead of simply increasing the volume of the catalyst, we propose to broaden the active temperature window by splitting the LNT along the exhaust line. In order to design this architecture, a complete 1D model of NOx trap has been developed. Validated with respect to experimental data, this model has been useful to define the two volumes of LNT, making significant savings on the test bench exploitation. However, one of the main difficulties to operate the proposed architecture is the NOx purge and sulfur poisoning management. In order to optimize the NOx and sulfur purge launches, we have developed a control strategy based on an embedded reduced LNT model. These strategies have been validated on different driving cycles, by the means of simulation and of vehicle tests using rapid prototyping tools.
Technical Paper

Vehicle Acoustic Synthesis Method: Improving Acquisition Time by Using P-U Probes

2005-05-16
2005-01-2444
In order to reach OEMs acoustic treatment targets (improving performance while minimizing the weight and cost impact), we have developed an original hybrid approach called “Vehicle Acoustic synthesis method”[1] to simulate - and therefore to optimize - noise treatments for both insulation and absorption, and to calculate the resulting Sound Pressure Level (SPL) at ear points for the middle and high frequency range. To calculate the SPL, we identify equivalent volume velocity sources from intensity measurements, and combine them to acoustic transfer functions (panel/ear) measured or computed with ray tracing codes using the reciprocity principle. Compared to our first approach [1], this paper shows a new measurement technique using pressure-particle velocity probes [2]. This technique allows to reduce acquisition time by a factor four, and makes therefore possible a synthesis method on a complete car within two weeks.
Technical Paper

Vibro-Acoustic Simulation of Intake Air Filter Using a Hybrid Modal Physical Coupling

2012-06-13
2012-01-1549
To assess the acoustic performance of modern automotive air filters, both the air-borne engine noise propagating through the interior air of the system (known as “pipe noise”) and the structure-borne noise radiated by the shell (“shell noise”) should be evaluated. In this paper, these different propagation paths are modeled using the finite element solver Actran on industrial test cases set-up by SOGEFI Air and Cooling Systems. The test-case is designed in such a way that the different propagation paths are assessed separately. First the engine acoustic pulsation that is transmitted through the filter's structure is considered. Second, the noise radiated by the shell excited by mechanical forces at the support location of the filter is evaluated. Finally, the acoustic transmission loss of the filter is predicted. The ingredients of the finite/infinite element models are reviewed in details in the paper.
X