Refine Your Search

Topic

Search Results

Technical Paper

2,000,000 Miles of Fluid Evaluation in City Bus Automatic Transmissions

1967-02-01
670185
In certain types of city bus service some automatic transmission fluids can fail in less than 10,000 miles. In order to provide satisfactory transmission performance for longer mileage, improved fluids are required. An investigation was undertaken to obtain improved fluids. Fifteen different fluid formulations were evaluated in 30 city buses operated in normal service for more than 2,000,000 miles. It was determined that fluids fail because of frictional deterioration and oxidation. Based on these evaluations, only two fluids were found to be satisfactory for more than 40,000 miles; one additional fluid was satisfactory for more than 30,000 miles. The remaining 12 fluids failed in less than 20,000 miles.
Technical Paper

A Combustion System for a Vehicular Regenerative Gas Turbine Featuring Low Air Pollutant Emissions

1967-02-01
670936
The combustion system developed for the General Motors GT-309 regenerative gas turbine is used to illustrate pertinent structural, performance, and exhaust emission considerations when designing for a vehicular gas turbine application. The development of each major component and the performance of the combustion system as a whole are reviewed. The satisfactory performance and durability potential of the GT-309 engine combustion system have been demonstrated by extensive operation in a component test facility and in several test cell and vehicle installed engines. Exhaust emissions of unburned hydrocarbons and carbon monoxide are minimal and are of no concern from an air pollution standpoint. No objectionable exhaust smoking and odor are produced.
Technical Paper

A Rotary Engine Test to Evaluate Lubricants for Control of Rotor Deposits

1974-02-01
740159
During development of the General Motors rotary engine, the lubricant was recognized as important to its success because certain lubricants produced deposits which tended to stick both side and apex seals. Consequently, it was decided to develop a rotary engine-dynamometer test, using a Mazda engine, which could be used for lubricant evaluation. In an investigation using an SE engine oil with which there was rotary engine experience, engine operating variables and engine modifications were studied until the greatest amount of deposits were obtained in 100 h of testing. The most significant engine modifications were: omission of inner side seals, plugging of half the rotor bearing holes, pinning of oil seals, grinding of end and intermediate housings, and using a separate oil reservoir for the metering pump. Using this 100 h test procedure, three engine oils and five automatic transmission fluids were evaluated.
Technical Paper

A Study of the Effects of Automotive Fluids on Elastomer Seal Materials Using Immersion Tests*

1966-02-01
660395
Effective performance of functional automotive components requires fluid sealing under compatible conditions. One method of determining this compatibility is through the use of immersion testing under a variety of conditions that simulate those experienced in actual use. By measuring the changes in the physical properties of the seal materials after immersion a judgment can be made regarding seal/fluid compatibility which will be encountered later in actual use. A series of immersion tests using representative seal materials and automotive fluids; namely, gear oils, transmission fluids, and motor oils were conducted within the framework of the Technical Committee on Automotive Rubber, jointly sponsored by SAE-ASTM.
Technical Paper

Ammonia as an Engine Fuel

1965-02-01
650052
Studies were conducted using spark-ignited reciprocating engines to evaluate ammonia as an alternate fuel for certain military applications. Conventional engines were found to perform poorly on ammonia. Several practical methods for improving engine performance while burning ammonia are described which include increased spark energy, increased compression ratio, engine supercharging, and hydrogen addition to the fuel. Dissociation of ammonia was investigated as a practical means for supplying hydrogen to an engine. The study indicates that satisfactory engine performance can be obtained while burning ammonia. Auxiliary equipment and controls necessary for vehicular use will require development.
Technical Paper

Automatic Transmission Fluid Viscosity at Low Temperature and its effect on transmission performance

1960-01-01
600049
A LOW-TEMPERATURE study of the relationship between the performance of a step-type automatic transmission and the transmission fluid viscosity is reported in this paper. It is shown that the low-temperature malfunction of these units is due to the viscometric properties of the fluid and that at the temperature at which the fluid reaches a certain critical viscosity the transmission will fail. A mathematical analysis of the mechanism of failure supports the conclusions drawn from the experimental study.*
Technical Paper

Combustion Bomb Tests of Laser Ignition

1974-02-01
740114
Tests of laser ignition are conducted in a combustion bomb. A range of fuels is investigated comprising isooctane, cyclohexane, n-heptane, n-hexane, clear indolene, and No. 1 diesel fuel. The ignition characteristics of laser-induced sparks are compared with sparks generated with a spark plug for different air/fuel ratios. The power density required to produce laser induced sparks is investigated. Although laser ignition appears to be impractical as an ignition device because of its low efficiency and high cost, it presents some interesting possibilities compared to the standard spark plug in that the laser spark is electrodeless and can be positioned anywhere inside the combustion chamber. Its primary use appears to be as a research tool.
Technical Paper

Continuous Secondary Air Modulation - Its Effect on Thermal Manifold Reactor Performance

1973-02-01
730493
Secondary air scheduling and average delivery rate have a great influence on the performance (carbon monoxide and hydrocarbon cleanup) of rich thermal manifold reactors. A continuously modulated secondary air system was devised to provide a tailpipe air-fuel ratio that did not change significantly with engine speed or load when a “flat” carburetion calibration was incorporated. This system involved throttling the inlet of the air pump(s) so that the air pump and engine intake pressures were equal. The continuous air modulation system was compared with an unmodulated system and a step-modulated system. The secondary air systems were investigated with both GMR “small volume” cast iron thermal reactors and Du Pont V thermal reactors on modified 350 CID V-8 engines in 1969 Chevrolet passenger vehicles. It was found that thermal reactor performance improved with each increase in control of the secondary air schedule.
Technical Paper

DEVELOPING TRANSAXLE FLUID

1960-01-01
600069
EXTENSIVE TESTING by GM Research Laboratories has screened five promising transaxle fluids out of 32 mineral-oil-base fluids, 10 synthetic-base fluids, and numerous additive-base stock combination fluids. This paper discusses the findings of the testing and the continuing program on the five fluids. Transaxle fluids have a number of properties affecting performance, including: High-temperature viscosity. Low-temperature fluidity. Shear resistance. Friction properties. Oxidation resistance. Antifoam quality. Effect on seals. Fluid-clutch plate compatibility. Antiwear quality. Extreme-pressure quality. Antirust and anticorrosion qualities.*
Technical Paper

Design and Development of a Variable Valve Timing (VVT) Camshaft

1974-02-01
740102
The development of a variable valve timing (VVT) camshaft was initiated as a potential means of controlling exhaust emissions from a spark ignition piston engine. This approach was based on the fact that valve overlap influences internal exhaust gas recirculation which in turn affects spark ignition engine emissions and performance. The design, fabrication, bench tests and engine durability tests of a unit incorporating splines to allow the intake cams to move relative to the exhaust cams is discussed. Preliminary test data from a 350 CID (5700 cm3) engine fitted with the VVT camshaft are discussed with regard to durability and emissions.
Technical Paper

Designing to Resist Fatigue - Examples of Component Design

1962-01-01
620262
This paper illustrates by way of two practical examples, namely, transmission gears and crankshafts, how the automotive industry applies basic approaches and methods for achieving fatigue resistant design. Analytic, laboratory, and field studies necessary in the development of these components are briefly outlined.
Technical Paper

Diesel Combustion Chamber Sampling - Hardware, Procedures, and Data Interpretation

1975-02-01
750849
In-cylinder sampling appears to be the only available means for obtaining detailed information of the diesel combustion process. This information is necessary to understand pollutant formation because of the intimate relationship between formation rates and local cylinder conditions. This paper discusses efforts to (1) examine and improve sampling valve design, (2) evaluate potential effects of the valve and the sampling system on sample composition, (3) find methods to extract useful information from sampling data. Sampling hardware is currently being used to study combustion in engines, but further work is needed to quantify the influence of hardware and procedures on sample composition and to design experiments to provide data containing maximum information.
Technical Paper

Diesel Combustion Phenomena as Studied in Free Piston Gasifiers

1963-01-01
630449
Paper deals with abnormal combustion initially existing in the Hyprex gasifier. It was found that this was mainly due to a long ignition delay period. To correct this situation, the fuel injection system was redesigned to permit later injection at higher compression pressures with good injection characteristics.
Technical Paper

Dynamic Computer Techniques for Vehicle Emission Development

1972-02-01
720211
Development of engine-vehicle prototypes for low emissions and optimum fuel control characteristics has been facilitated through use of a computerized emissions test system. Simultaneous on-line sampling of exhaust species concentrations, fuel consumption, spark advance, pressures, and temperatures provides both graphical and computed outputs of several vehicle parameters that are important to development programs. On-line display of vehicle air-fuel ratio is continuously supplied. Either of two federal driving cycles (or any random driving schedule) may be employed. Dynamic calibration, range sensing, and zero-drift correction keep operator interaction and errors to a minimum. Capability for reprocessing, plotting, and/or patching stored data provides increased computational flexibility.
Technical Paper

Effect of Combustion Chamber Surface Temperature on Exhaust Hydrocarbon Concentration

1971-02-01
710587
The relationship between surface temperature and exhaust hydrocarbon concentration was explored by installing surface thermocouples at three locations in the combustion chamber of a single-cylinder engine. Coolant temperature, coolant passage surface scale, and ethylene glycol in the coolant affected exhaust hydrocarbon concentration through changes in surface temperature. As power output increased, combustion chamber surface temperature rose, and exhaust hydrocarbon concentration fell. The increase in surface temperature accounted for about 43% of the decrease in hydrocarbon concentration. The reason for the other 57% of the decrease is unknown, but it may have been caused by increasing gas temperatures in the quench zone. Increasing surface temperature by engine modification would be expected to have adverse effects on engine octane requirement, volumetric efficiency, and oil oxidation.
Technical Paper

Effects of Engine Oil Composition on the Activity of Exhaust Emissions Oxidation Catalysts

1973-02-01
730598
Platinum, palladium, and copper-chromium oxidation catalysts for exhaust emission control were exposed to exhaust gases from a steady-state engine dynamometer test in which the amount of oil consumed per unit volume of catalyst was high. When unleaded gasoline (0.004 Pb g/gal, 0.004 P g/gal) was used, conventional SE oil caused somewhat greater loss of catalyst activity than an ashless and phosphorus-free (“clean”) oil. Chemical analysis of the catalyst indicated that phosphorus from the conventional oil was probably responsible for the difference. However, a test run with low-lead (0.5 Pb g/gal, 0.004 P g/gal) gasoline and “clean” oil caused much greater catalyst activity deterioration than either of the tests with unleaded gasoline.
Technical Paper

Effects of Spark Location and Combustion Duration on Nitric Oxide and Hydrocarbon Emissions

1973-02-01
730153
This study describes the effect of spark plug location on NO and HC emissions from a single-cylinder engine with a specially modified combustion chamber. The effects of changes in combustion duration caused either by spark location, dual spark plugs, or charge dilution on NO and HC emissions were also examined. Experiments were run at constant speed, constant load, and mbt spark timing. Nitric oxide emissions were the same with the spark plug located either near the intake or exhaust valve, but were higher with the spark plug midway between the valves or with dual ignition. Hydrocarbon emissions were lowest with the spark plug nearest the exhaust valve and increased with the distance of the spark plug from the exhaust valve. With charge dilution the decrease in NO emission was isolated into a pure dilution effect and a combustion duration effect. The combustion duration effect was minimal at rich mixtures and increased with air-fuel ratio.
Technical Paper

Energy Recovery Incentive for Regenerative Braking

1962-01-01
620143
This paper describes a computer study made by the General Motors Corp. Research Laboratories to determine what percentage of the energy supplied to the axle of a passenger car is available for recovery through regeneration. Several weight classes of passenger cars were studied using three driving schedules-city, suburban, and highway. For each vehicle run in accordance with the prescribed driving schedules, two ratio percentages were obtained: (1) the ratio of energy available for recovery to the total energy supplied to the axle, and (2) the above ratio modified by assumed efficiencies in the propulsion and regeneration systems.
Technical Paper

Evaluating the Effect of Fluids on Automatic Transmission Piston Seal Materials

1962-01-01
620231
A brief review of the testing of automatic transmission fluid for compatibility with seals is presented. The total immersion test used in fluid qualification, while apparently effective in predicting the compatibility of fluids and seals in service, does not correlate well with transmission tests with respect to hardness change of piston seals. The Dip-Cycle Test, developed to overcome this limitation, is a procedure for alternately immersing seal specimens in the test fluid and suspending them in the hot air-fluid vapor atmosphere above the fluid. Correlation of the Dip-Cycle Test with transmission piston seal results is much improved over that with the total immersion test. It is the purpose of this paper to review these developments and to present an improved test procedure (dip cycle test) for evaluating the effect of fluids on transmission piston seal materials.
X