Refine Your Search

Topic

Search Results

Technical Paper

A Case Study of the Economic Feasibility of a Demand-Responsive Transportation System

1972-02-01
720219
This paper presents an analysis of the economic feasibility of a demand-responsive transportation system employing driver-operated vehicles on existing street networks. The system is designed to meet the general public transportation needs of a suburban community. The analysis follows traditional economic theory in developing demand and supply curves for the transportation service as a consumer good, followed by an investigation of the equilibrium between demand and supply under various market conditions. Cost models specifically applicable to a transportation service with demand-responsive attributes are formulated to calculate the system supply functions, and an attitudinal survey is employed to generate estimates of demand in the case study community. The demand and supply equilibrium situations are investigated with respect to funding alternatives and sensitivity to changes in supply and demand variables.
Technical Paper

A Combustion System for a Vehicular Regenerative Gas Turbine Featuring Low Air Pollutant Emissions

1967-02-01
670936
The combustion system developed for the General Motors GT-309 regenerative gas turbine is used to illustrate pertinent structural, performance, and exhaust emission considerations when designing for a vehicular gas turbine application. The development of each major component and the performance of the combustion system as a whole are reviewed. The satisfactory performance and durability potential of the GT-309 engine combustion system have been demonstrated by extensive operation in a component test facility and in several test cell and vehicle installed engines. Exhaust emissions of unburned hydrocarbons and carbon monoxide are minimal and are of no concern from an air pollution standpoint. No objectionable exhaust smoking and odor are produced.
Technical Paper

A Laboratory Method for Testing Moisture Sensitivity of Brake Lining Materials

1962-01-01
620128
A laboratory test method has been devised to measure the variation in coefficient of friction values of a brake lining as it passes through the various degrees of wetness. The results of tests on two linings are shown: the first one of the most sensitive lining material tested to date; the second an improved material.
Technical Paper

A Rotary Engine Test to Evaluate Lubricants for Control of Rotor Deposits

1974-02-01
740159
During development of the General Motors rotary engine, the lubricant was recognized as important to its success because certain lubricants produced deposits which tended to stick both side and apex seals. Consequently, it was decided to develop a rotary engine-dynamometer test, using a Mazda engine, which could be used for lubricant evaluation. In an investigation using an SE engine oil with which there was rotary engine experience, engine operating variables and engine modifications were studied until the greatest amount of deposits were obtained in 100 h of testing. The most significant engine modifications were: omission of inner side seals, plugging of half the rotor bearing holes, pinning of oil seals, grinding of end and intermediate housings, and using a separate oil reservoir for the metering pump. Using this 100 h test procedure, three engine oils and five automatic transmission fluids were evaluated.
Technical Paper

Considerations in the Design and Development of Turbines for Automotive Gas Turbine Engines

1963-01-01
630115
The conflicts in the design of turbines for an automotive gas turbine engine are examined. Considerations of stress, efficiency, engine and vehicle acceleration requirements, and compatibility of the flow path are shown to impose a number of opposing requirements. The philosophies used to compromise the conflicts in two successive engine designs are presented. Following a discussion of turbine test facilities, test results are presented for a typical turbine.
Technical Paper

Continuous Secondary Air Modulation - Its Effect on Thermal Manifold Reactor Performance

1973-02-01
730493
Secondary air scheduling and average delivery rate have a great influence on the performance (carbon monoxide and hydrocarbon cleanup) of rich thermal manifold reactors. A continuously modulated secondary air system was devised to provide a tailpipe air-fuel ratio that did not change significantly with engine speed or load when a “flat” carburetion calibration was incorporated. This system involved throttling the inlet of the air pump(s) so that the air pump and engine intake pressures were equal. The continuous air modulation system was compared with an unmodulated system and a step-modulated system. The secondary air systems were investigated with both GMR “small volume” cast iron thermal reactors and Du Pont V thermal reactors on modified 350 CID V-8 engines in 1969 Chevrolet passenger vehicles. It was found that thermal reactor performance improved with each increase in control of the secondary air schedule.
Technical Paper

Corrosion Resistance of Trim Materials

1963-01-01
630110
As the design of automobiles changed over the past seventy years, manufacturers have increased the usage of decorative trim to further enhance the beauty of styling concepts. As new trim materials were introduced and parts became more complicated in design, producers have continued their efforts to produce decorative trim parts which remain attractive during the service life of the automobile. The service performance of trim materials in several geographic locations, the use of accelerated tests to predict service performance, recent developments in improving the durability of plated parts, and requirements for producing quality exterior decorative trim are reviewed in this paper.
Technical Paper

Design and Development of a Variable Valve Timing (VVT) Camshaft

1974-02-01
740102
The development of a variable valve timing (VVT) camshaft was initiated as a potential means of controlling exhaust emissions from a spark ignition piston engine. This approach was based on the fact that valve overlap influences internal exhaust gas recirculation which in turn affects spark ignition engine emissions and performance. The design, fabrication, bench tests and engine durability tests of a unit incorporating splines to allow the intake cams to move relative to the exhaust cams is discussed. Preliminary test data from a 350 CID (5700 cm3) engine fitted with the VVT camshaft are discussed with regard to durability and emissions.
Technical Paper

Digital Data Acquisition and Computer Data Reduction for the California Exhaust Emission Test

1966-02-01
660406
The tedious, time consuming task of hand reducing data from the California exhaust emission test has been alleviated through the use of digital data acquisition equipment and a digital computer. Analog signals from exhaust gas analyzers and an engine speed transducer are converted to digital measurements which are recorded on tape and submitted to a digital computer for data analysis and computation of results. In the data analysis, the computer identifies the required driving modes from engine speed changes, taking into account the sample delay time. “Reported” composite emissions determined by the automatic data reduction method agree within 5% with results determined by careful hand analysis of analog strip chart recordings. The results determined by the automatic data reduction system are more consistent and accurate because human errors prevalent in hand analysis have been eliminated, and because nonlinear analyzer response is accounted for.
Technical Paper

Dynamic Computer Techniques for Vehicle Emission Development

1972-02-01
720211
Development of engine-vehicle prototypes for low emissions and optimum fuel control characteristics has been facilitated through use of a computerized emissions test system. Simultaneous on-line sampling of exhaust species concentrations, fuel consumption, spark advance, pressures, and temperatures provides both graphical and computed outputs of several vehicle parameters that are important to development programs. On-line display of vehicle air-fuel ratio is continuously supplied. Either of two federal driving cycles (or any random driving schedule) may be employed. Dynamic calibration, range sensing, and zero-drift correction keep operator interaction and errors to a minimum. Capability for reprocessing, plotting, and/or patching stored data provides increased computational flexibility.
Technical Paper

Effect of Combustion Chamber Surface Temperature on Exhaust Hydrocarbon Concentration

1971-02-01
710587
The relationship between surface temperature and exhaust hydrocarbon concentration was explored by installing surface thermocouples at three locations in the combustion chamber of a single-cylinder engine. Coolant temperature, coolant passage surface scale, and ethylene glycol in the coolant affected exhaust hydrocarbon concentration through changes in surface temperature. As power output increased, combustion chamber surface temperature rose, and exhaust hydrocarbon concentration fell. The increase in surface temperature accounted for about 43% of the decrease in hydrocarbon concentration. The reason for the other 57% of the decrease is unknown, but it may have been caused by increasing gas temperatures in the quench zone. Increasing surface temperature by engine modification would be expected to have adverse effects on engine octane requirement, volumetric efficiency, and oil oxidation.
Technical Paper

Effects of Engine Oil Composition on the Activity of Exhaust Emissions Oxidation Catalysts

1973-02-01
730598
Platinum, palladium, and copper-chromium oxidation catalysts for exhaust emission control were exposed to exhaust gases from a steady-state engine dynamometer test in which the amount of oil consumed per unit volume of catalyst was high. When unleaded gasoline (0.004 Pb g/gal, 0.004 P g/gal) was used, conventional SE oil caused somewhat greater loss of catalyst activity than an ashless and phosphorus-free (“clean”) oil. Chemical analysis of the catalyst indicated that phosphorus from the conventional oil was probably responsible for the difference. However, a test run with low-lead (0.5 Pb g/gal, 0.004 P g/gal) gasoline and “clean” oil caused much greater catalyst activity deterioration than either of the tests with unleaded gasoline.
Technical Paper

Effects of Spark Location and Combustion Duration on Nitric Oxide and Hydrocarbon Emissions

1973-02-01
730153
This study describes the effect of spark plug location on NO and HC emissions from a single-cylinder engine with a specially modified combustion chamber. The effects of changes in combustion duration caused either by spark location, dual spark plugs, or charge dilution on NO and HC emissions were also examined. Experiments were run at constant speed, constant load, and mbt spark timing. Nitric oxide emissions were the same with the spark plug located either near the intake or exhaust valve, but were higher with the spark plug midway between the valves or with dual ignition. Hydrocarbon emissions were lowest with the spark plug nearest the exhaust valve and increased with the distance of the spark plug from the exhaust valve. With charge dilution the decrease in NO emission was isolated into a pure dilution effect and a combustion duration effect. The combustion duration effect was minimal at rich mixtures and increased with air-fuel ratio.
Technical Paper

Emission Control with Lean Operation Using Hydrogen-Supplemented Fuel

1974-02-01
740187
Hydrogen-supplemented fuel was investigated as a means of extending lean operating limits of gasoline engines for control of NOx. Single-cylinder engine tests with small additions of hydrogen to the fuel resulted in very low NOx and CO emissions for hydrogen-isooctane mixtures leaner than 0.55 equivalence ratio. Significant thermal efficiency improvements resulted from the extension beyond isooctane lean limit operation. However, HC emissions increased markedly at these lean conditions. A passenger car was modified to operate at 0.55-0.65 equivalence ratio with supplemental hydrogen. Vehicle emissions, as established by the 1975 Federal Exhaust Emissions Test, demonstrated the same trends as the single-cylinder engine tests. The success of the hydrogen-supplemented fuel approach will ultimately hinge on the development of both a means of controlling hydrocarbon emissions and a suitable hydrogen source on board the vehicle.
Technical Paper

Engine Oil MS Test Sequences IIA and IIIA

1965-02-01
650867
Engine oil test Sequences IIA and IIIA have been developed to replace Sequences I, II, and III. These new sequences are designed to evaluate lubricants for use in current passenger car engines under severe (MS) service conditions. Lubricant performance is evaluated with respect to scuffing wear, rust, corrosion, deposits, and rumble. The Sequence IIA and IIIA test procedure involves major changes which affect the evaluation of engine rusting and provides improved correlation between test results and short-trip service. Average engine rust ratings correlate with service data within ±0.5 numbers. The new test also provides better repeatability and reproducibility in a significantly shorter schedule. The rust repeatability and reproducibility is less than ±0.2 and ±0.6 numbers, respectively. Test time has been reduced 52%.
Technical Paper

Evaluating the Effect of Fluids on Automatic Transmission Piston Seal Materials

1962-01-01
620231
A brief review of the testing of automatic transmission fluid for compatibility with seals is presented. The total immersion test used in fluid qualification, while apparently effective in predicting the compatibility of fluids and seals in service, does not correlate well with transmission tests with respect to hardness change of piston seals. The Dip-Cycle Test, developed to overcome this limitation, is a procedure for alternately immersing seal specimens in the test fluid and suspending them in the hot air-fluid vapor atmosphere above the fluid. Correlation of the Dip-Cycle Test with transmission piston seal results is much improved over that with the total immersion test. It is the purpose of this paper to review these developments and to present an improved test procedure (dip cycle test) for evaluating the effect of fluids on transmission piston seal materials.
Technical Paper

Exhaust Hydrocarbon and Nitrogen Oxide Concentrations with an Ethyl Alcohol-Gasoline Fuel

1964-01-01
640651
The exhaust hydrocarbon and nitrogen oxide concentrations of a single-cylinder engine, operating on a 25% (wt.) ethyl alcohol – 75% gasoline fuel, are compared to those operating on gasoline. For comparisons at the same airfuel ratio but lower than 15.3, the addition of ethyl alcohol to gasoline reduces the exhaust hydrocarbon concentrations and increases the nitrogen oxide concentrations. At the same air-fuel ratio but higher than 15.3, the addition of ethyl alcohol reduces both the hydrocarbon and nitrogen oxide concentrations. However, tests with automobiles, operating at the same air-fuel ratio with both fuels, indicate that the addition of ethyl alcohol causes an increase in “surge” and, in some cases, results in a power loss. To overcome these performance problems, the ethyl alcohol-gasoline fuel should be operated at about the same percent theoretical air as gasoline.
Technical Paper

GMR Stirling Thermal Engine part of the Stirling engine story-1960 chapter

1960-01-01
600068
THIS PAPER discusses the Stirling thermal enging from four points of view: 1. The ideal, thermodynamic point of view, showing the inherent potentialities of the ideal Stirling cycle in comparison to the basic cycles of other engines. 2. The physical engine and its method of operation with respect to the ideal cycle and the limitations of practical mechanics. 3. Performance data from the first modern Stirling engines ever operated in the United States, evaluating the relationship between the new engine and other more familiar engines of similar sizes. This comparative discussion serves to demonstrate the advantages and disadvantages of the Stirling engine and to indicate its proper place in the 1960 family of prime movers. 4. A look backward into the century of history behind the modern engine pointing out significant milestones in the engine's development.
Technical Paper

General Motors' Steam-Powered Passenger Cars - Emissions, Fuel Economy and Performance

1970-02-01
700670
Two steam-powered passenger ears have been designed, built, and tested. The SE-101 is an intermediate sport coupe incorporating the comfort and convenience features of a modern passenger car and vehicle performance comparable to a low-powered automobile. The SE-124 is a very low-power intermediate sedan with manual start and semiautomatic control. The characteristics of these cars were evaluated relative to the operational requirements of current transportation needs, with particular emphasis on exhaust emissions. Start-up time, exhaust emissions, fuel economy, acceleration, and water consumption data are presented. Although any one of these characteristics may be improved at the expense of others, it does not appear that any compromise can satisfy all of the areas required by today's motorist.
Technical Paper

Initial Oxidation Activity of Noble Metal Automotive Exhaust Catalysts

1973-02-01
730570
The use of relatively small catalytic converters containing alumina-supported platinum (Pt) and palladium (Pd) catalysts to control exhaust emissions of hydrocarbons (HC) and carbon monoxide (CO) was investigated in full-scale vehicle tests. Catalytic converters containing 70-80in3 of fresh catalyst were installed at two converter locations on the vehicle. Carburetion was richer than stoichiometric, with air-fuel ratios (A/F) comparable to those proposed for dual-catalyst systems containing an NOx reduction catalyst. The vehicle was equipped with exhaust manifold air injection. Homogeneous thermal reaction in the exhaust manifolds played a significant role in the overall control of HC and CO. Four Pt catalysts, three Pd catalysts, and one Pt-Pd catalyst were prepared and evaluated. Total metal loadings were varied 0.01-0.07 troy oz. Hydrocarbon conversion efficiencies varied 62-82%, measured over the 1975 cold-hot start weighted Federal Test Procedure.
X