Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

248mm Elliptical Torque Converter from DaimlerChrysler Corporation

2007-04-16
2007-01-0241
The need for efficient space utilization has provided a framework for the design of a 248mm family of torque converters that supports a wide choice of engine and transmission combinations. The axial length of the part and its weight have been substantially reduced while the performance range has been broadened without degradation of efficiency. The new converter operates in an expanded slipping clutch mode. It significantly contributes to the performance and fuel economy improvements of related vehicles. To meet the cost target, the comprehensive lineup and the resulting complexity have required a high level of component interchangeability. During the design phase, the manufacturing core competencies were scrutinized and process redundancies eliminated, both resulting in optimization of material selection and applicable technology.
Technical Paper

A CAE Based Stochastic Assessment and Improvement of Vehicle NCAP Response

2004-03-08
2004-01-0458
One of the primary issues in the interpretation of vehicle impact response data, observed from vehicle crash test events, is coping with variability. This vehicle response inconsistency generally causes test results to be unpredictable and makes CAE test validation work difficult as well. This paper, considering the uncertain characteristics of vehicle impact events, has implemented a stochastic assessment of vehicle NCAP response variation through a CAE vehicle impact model, and it has accomplished the three primary study objectives as stated follows: 1) Identify the response variation causing factors stochastically from various structural and environmental factor candidates and quantify the degree of their influences on crash response, 2) Develop a methodology for interpreting the significance of the factor effects in conjunction with vehicle impact mechanics and physics, and 3) Implement a stochastic improvement of the vehicle NCAP responses and their repeatability
Technical Paper

A Comparison of Heavy-Duty Diesel Truck Engine Smoke Opacities at High Altitude and at Sea Level

1991-08-01
911671
A study was conducted by the California Air Resources Board to investigate the effects that altitude has on in-use heavy-duty diesel truck smoke opacities. The understanding of these effects may allow for the establishment of a high altitude opacity standard for diesel trucks operating at or above altitudes of 5800 feet. During a three-week study, 170 heavy-duty diesel trucks were tested at an altitude of 5,820 feet using a test procedure consisting of rolling acceleration and snap idle tests. Eighty-four (84) of these trucks were recaptured and retested at an altitude of 125 feet. Results from a regression analysis indicates that, on average, truck smoke opacities increased by 23 opacity points when tested at altitudes near 6000 feet. Possible high altitude cutpoints and failure rates are also discussed.
Technical Paper

A Comparison of Private Garage and Centralized I&M Programs

1979-02-01
790785
A fundamental decision to be made in developing a motor vehicle Inspection and Maintenance (I&M) program is whether a “centralized” or “private garage” program will be used. Under the centralized approach, the state or a state contractor operates a network of single purpose “Inspection Centers” to inspect motor vehicles before the completion of the annual registration renewal process. After any repairs necessary to correct vehicles with excessive emissions are made at a facility of the owner's choosing, the vehicle must pass a reinspection at the Inspection Center. Under the private garage (decentralized) approach, both inspections and repairs are conducted by private repair facilities licensed by the state. A comparison of a centralized I&M program and a private garage I&M program currently operating in California indicates that the centralized program is providing over ten times greater emissions reductions.
Technical Paper

A Computer Model Based Sensitivity Analysis of Parameters of an Automotive Air Conditioning System

2004-03-08
2004-01-1564
The objective of this work is to perform a computer model based sensitivity analysis of parameters of an automotive air conditioning system to identify the critical parameters. Design of Experiment (DOE) and Analysis of Variance (ANOVA) techniques have been used to identify the critical parameters and their relative effects on the air conditioning system performance. The sensitivity analysis has been verified by running similar tests on an air conditioning system test stand (AC Test Stand).
Technical Paper

A Computerized Optimization Method Of Engine Mounting System

2003-05-05
2003-01-1461
This paper presents a method for optimization design of an engine mounting system subjected to some constraints. The engine center of gravity, the mount stiffness rates, the mount locations and/or their orientations with respect to the vehicle can be chosen as design variables, but some of them are given in advance or have limitations because of the packaging constraints on the mount locations, as well as the individual mount rate ratio limitations imposed by manufacturability. A computer program, called DynaMount, has been developed that identifies the optimum design variables for the engine mounting system, including decoupling mode, natural frequency placement, etc.. The degree of decoupling achieved is quantified by kinetic energy distributions calculated for each of the modes. Several application examples are presented to illustrate the validity of this method and the computer program.
Technical Paper

A Fully Variable Mechanical Valvetrain with a Simple Moving Pivot

2005-04-11
2005-01-0770
A continuously variable lift, duration and phase mechanical lift mechanism is described, as applied to the intake valvetrain of a SOHC, 4-valve per cylinder, four-cylinder production engine. Improvements in fuel economy were sought by reduction of pumping losses and improved charge preparation, and optimization of WOT torque was attempted by variation of intake valve closing angle. Adjustment of the mechanism is achieved by movement of the pivot shaft for the rocker arms. The relationship between lift, duration and phase is predetermined at the design stage, and is fixed during operation. There is considerable design flexibility to achieve the envelope of lift curves deemed desirable. The operation of the mechanism is described, as are the development procedure, testing with fixed cams, some cycle simulation, friction testing on a separate rig and dyno testing results for idle, part load and WOT.
Technical Paper

A Graphical Representation of Road Profile Characteristics

2004-03-08
2004-01-0769
Load data representing severe customer usage is required during the chassis development process. One area of current research is the use of road profiles for predicting chassis loads. The most direct method of predicting these loads is to run dynamic simulations of the vehicle using numerous road profiles as the excitation. This onerous task may be avoided, and a greatly reduced number of simulations would be required, if roads having similar characteristics can be grouped. Currently, road profiles are characterized by their spectral content. It has been noted by several researches, however, that road profiles are generally nonstationary signals that contain significant transient events and are not well described in the spectral domain. The objective of this work, then, is to develop a method by which the characteristics of the road can be captured by describing these constitutive transient events.
Technical Paper

A Hybrid Method for Vehicle Axle Noise Simulation with Experimental Validation

2003-05-05
2003-01-1707
Recently, many authors have attempted to represent an automobile body in terms of experimentally derived frequency response functions (FRFs), and to couple the FRFs with a FEA model of chassis for performing a total system dynamic analysis. This method is called Hybrid FEA-Experimental FRF method, or briefly HYFEX. However, in cases where the chassis model does not include the bushing models, one can not directly connect the FRFs of the auto body to the chassis model for performing a total system dynamic analysis. In other cases when the chassis model includes the bushings, the bushing dynamic rates are modeled as constant stiffness rather than frequency dependent stiffness, the direct use of the HYFEX method will yield unsatisfactory results. This paper describes how the FRF's of the auto body and the frequency dependent stiffness data of the bushings can be combined with an appropriate mathematical formulation to better represent the dynamic characteristics of a full vehicle.
Journal Article

A Miller Cycle Engine without Compromise - The Magma Concept

2017-03-28
2017-01-0642
The Magma engine concept is characterised by a high compression ratio, central injector combustion system employed in a downsized direct-injection gasoline engine. An advanced boosting system and Miller cycle intake-valve closing strategies are used to control combustion knock while maintaining specific performance. A key feature of the Magma concept is the use of high CR without compromise to mainstream full-load performance levels. This paper focuses on development of the Magma combustion system using a single-cylinder engine, including valve event, air motion and injection strategies. Key findings are that Early Intake Valve Closing (EIVC) is effective both in mitigating knock and improving fuel consumption. A Net Indicated Mean Effective Pressure (NIMEP) equivalent to 23.6 bar Brake Mean Effective Pressure (BMEP) on a multi-cylinder engine has been achieved with a geometric compression ratio of 13:1.
Technical Paper

A Minimum-Effort Motion Algorithm for Digital Human Models

2003-06-17
2003-01-2228
A new realistic motion control algorithm for digital human models is presented in this paper based on the principle of effort minimization. The proposed algorithm is developed through an innovative mathematical model to make the applications more flexible and more global, especially for the visualization of human motions in automotive assembly operations. The central idea of this unique model is to interpret the solution of the homogeneous Lagrange equation for a mannequin as the origin of dynamic motion. Furthermore, a digital human possesses about 42 joints over the main body except the head, fingers and toes, and offers a large room of kinematic redundancy. We have found 14 new 3-D independent motion markers assigned over the human body to constitute a Cartesian coordinate system, under which a minimum-effort based dynamic control scheme is developed using a state-feedback linearization procedure.
Technical Paper

A Model for On-Line Monitoring of In-Cylinder Residual Gas Fraction (RGF) and Mass Flowrate in Gasoline Engines

2006-04-03
2006-01-0656
In a gasoline engine, the unswept in-cylinder residual gas and introduction of external EGR is one of the important means of controlling engine raw NOx emissions and improving part load fuel economy via reduction of pumping losses. Since the trapped in-cylinder Residual Gas Fraction (RGF, comprised of both internal, and external) significantly affects the combustion process, on-line diagnosis and monitoring of in-cylinder RGF is very important to the understanding of the in-cylinder dilution condition. This is critical during the combustion system development testing and calibration processes. However, on-line measurement of in-cylinder RGF is difficult and requires an expensive exhaust gas analyzer, making it impractical for every application. Other existing methods, based on measured intake and exhaust pressures (steady state or dynamic traces) to calculate gas mass flowrate across the cylinder ports, provide a fast and economical solution to this problem.
Technical Paper

A Multiple Order Conformability Model for Uniform Cross-Section Piston Rings

2005-04-11
2005-01-1643
This paper examines the conformability of elastic piston rings to a distorted cylinder bore. Several bounds are available in the literature to help estimate the maximum allowable Fourier coefficient in a Fourier expansion of bore distortion: the analytically derived bounds in [7] and [8], and the semi-empirically derived bounds discussed in [9]. The underlying assumptions for each set of analytic bounds are examined and a multiple order algorithm is derived. The proposed algorithm takes account of multiple orders of distortion at once. It is tested with finite element (FE) data and compared to the classical bound approach. The results indicate that the bounds in [7] are compatible with linear elasticity theory (LET), whereas the bounds in [8] are not. Furthermore, numerical evidence indicates that the present multiple order algorithm can predict seal breaches more accurately than either of the other analytic bounds.
Technical Paper

A New Way of Electrical/Electronic Systems Endurance Testing of Vehicles in a Real World Environment Prior to Production Launch

2001-03-05
2001-01-1101
With the increasing emphasis on Systems Engineering, there is a need to ensure that Electrical/Electronic (E/E) Systems Endurance Testing of vehicles, in a real world environment, prior to Production Launch, is performed in a manner and at a technological level that is commensurate with the high level of electronics and computers in contemporary vehicles. Additionally, validating the design and performance of individual standalone electronic systems and modules “on the bench” does not guarantee that all the permutations and combinations of real-world hardware, software, and driving conditions are taken into account. Traditional Proving Ground (PG) vehicle testing focuses mainly on powertrain durability testing, with only a simple checklist being used by the PG drivers as a reminder to cycle some of the electrical components such as the power window switches, turn signals, etc.
Technical Paper

A Semi-Empirical Model for Fast Residual Gas Fraction Estimation in Gasoline Engines

2006-10-16
2006-01-3236
Accurate accounting for fresh charge (fuel and air) along with trapped RGF is essential for the subsequent thermodynamic analysis of combustion in gasoline engines as well as for on-line and real-time quantification as relevant to engine calibration and control. Cost and complexity of such techniques renders direct measurement of RGF impractical for running engines. In this paper, an empirically-based approach is proposed for on-line RGF, based on an existing semi-empirical model [1]. The model developed expands the range over which the semi-empirical model is valid and further improves its accuracy. The model was rigorously validated against a well correlated GT-POWER model as well as results from 1D gas exchange model [2]. Overall, using this model, RGF estimation error was within ∼1.5% for a wide range of engine operating conditions. The model will be implemented in Dyno development and calibration at Chrysler Group.
Technical Paper

A Study of the Relative Benefits of On-Board Diagnostics and Inspection and Maintenance in California

1995-08-01
951944
California is considering adopting an enhanced Inspection and Maintenance (I&M) program (commonly referred to as Smog Check II) beginning with the 1996 calendar year. This program will utilize a targeting scheme to identify vehicles likely to be high emitters and send these vehicles to centralized testing facilities. The remaining fleet of vehicles will be sent to decentralized testing facilities. At these facilities, vehicles will be subjected to steady state loaded mode dynamometer based tests. Simultaneously, all 1996 and later model year passenger cars, light- and medium-duty trucks sold in California will be equipped with an On-Board Diagnostic (OBDII) system. This system is designed to monitor critical emission related components and activate a Malfunction Indicator Light (MIL) when a failure or a drift in calibration is likely to cause emissions to exceed 1.5 times the vehicle certification standards.
Journal Article

Achieving an 80% GHG Reduction by 2050 in California's Passenger Vehicle Fleet: Implications for the ZEV Regulation

2010-10-19
2010-01-2306
In recognizing the potential for large, damaging impacts from climate change, California enacted Executive Order S-03-05, requiring a reduction in statewide greenhouse gas (GHG) emissions to 80% below 1990 levels by 2050. Given that the transportation light-duty vehicle (LDV) segment accounts for 28% of the state's GHG emissions today, it will be difficult to meet the 2050 goal unless a portfolio of near-zero carbon transportation solutions is pursued. Because it takes decades for a new propulsion system to capture a large fraction of the passenger vehicle market due to vehicle fleet turn-over rates, it is important to accelerate the introduction of these alternatives to ensure markets enter into early commercial volumes (10,000s) between 2015 and 2020. This report summarizes the results and conclusions of a modeling exercise that simulated GHG emissions from the LDV sector to 2050 in California.
Video

Advanced Combustion & System Engineering - Affordable Fuel Economy?

2012-05-10
Future fuel economy targets represent a significant challenge to the automotive industry. While a range of technologies are in research and development to address this challenge, they all bring additional cost and complexity to future products. The most cost effective solutions are likely to be combinations of technologies that in isolation might have limited advantages but in a systems approach can offer complementary benefits. This presentation describes work carried out at Ricardo to explore Intelligent Electrification and the use of Stratified Charge Lean Combustion in a spark ignition engine. This includes a next generation Spray Guided Direct Injection SI engine combustion system operating robustly with highly stratified dilute mixtures and capable of close to 40% thermal efficiency with very low engine-out NOx emissions.
Technical Paper

An Advanced Diesel Fuels Test Program

2001-03-05
2001-01-0150
This paper reports on DaimlerChrysler's participation in the Ad Hoc Diesel Fuels Test Program. This program was initiated by the U.S. Department of Energy and included major U.S. auto makers, major U.S. oil companies, and the Department of Energy. The purpose of this program was to identify diesel fuels and fuel properties that could facilitate the successful use of compression ignition engines in passenger cars and light-duty trucks in the United States at Tier 2 and LEV II tailpipe emissions standards. This portion of the program focused on minimizing engine-out particulates and NOx by using selected fuels, (not a matrix of fuel properties,) in steady state dynamometer tests on a modern, direct injection, common rail diesel engine.
Technical Paper

An Approach to Torque-Based Engine Management Systems

2001-03-05
2001-01-0269
The ever-growing number of interacting electronic vehicle control systems requires new control algorithms to manage the increasing system complexity. The paper describes a torque-based engine control architecture which uses a central torque demand variable to control the regulating qualities. This torque demand variable is the result of the coordination of all torque requests throughout the vehicle. Therefore, the system manages the whole process of prioritizing the torque demands of the different subsystems such as electronic stability or transmission control. If further vehicle subsystems have to be integrated, the structure can be easily extended as the torque demand variable is the only interface between the engine control algorithms and other vehicle control systems.
X