Refine Your Search

Topic

Author

Search Results

Technical Paper

248mm Elliptical Torque Converter from DaimlerChrysler Corporation

2007-04-16
2007-01-0241
The need for efficient space utilization has provided a framework for the design of a 248mm family of torque converters that supports a wide choice of engine and transmission combinations. The axial length of the part and its weight have been substantially reduced while the performance range has been broadened without degradation of efficiency. The new converter operates in an expanded slipping clutch mode. It significantly contributes to the performance and fuel economy improvements of related vehicles. To meet the cost target, the comprehensive lineup and the resulting complexity have required a high level of component interchangeability. During the design phase, the manufacturing core competencies were scrutinized and process redundancies eliminated, both resulting in optimization of material selection and applicable technology.
Technical Paper

A Grammatical Evolution Approach to System Identification of Laser Lap Welding

2006-04-03
2006-01-1614
Laser lap welding quality is a non-linear response based on a host of categorical and numeric material and process variables. This paper describes a Grammatical Evolution approach to the structure identification of the laser lap welding process and compares its performance with linear regression and a neuro-fuzzy inference system.
Technical Paper

A Graphical Representation of Road Profile Characteristics

2004-03-08
2004-01-0769
Load data representing severe customer usage is required during the chassis development process. One area of current research is the use of road profiles for predicting chassis loads. The most direct method of predicting these loads is to run dynamic simulations of the vehicle using numerous road profiles as the excitation. This onerous task may be avoided, and a greatly reduced number of simulations would be required, if roads having similar characteristics can be grouped. Currently, road profiles are characterized by their spectral content. It has been noted by several researches, however, that road profiles are generally nonstationary signals that contain significant transient events and are not well described in the spectral domain. The objective of this work, then, is to develop a method by which the characteristics of the road can be captured by describing these constitutive transient events.
Technical Paper

An Experimental Study on the Effect of Intake Primary Runner Blockages on Combustion and Emissions in SI Engines under Part-Load Conditions

2004-10-25
2004-01-2973
Charge motion is known to accelerate and stabilize combustion through its influence on turbulence intensity and flame propagation. The present work investigates the effect of charge motion generated by intake runner blockages on combustion characteristics and emissions under part-load conditions in SI engines. Firing experiments have been conducted on a DaimlerChrysler (DC) 2.4L 4-valve I4 engine, with spark range extending around the Maximum Brake Torque (MBT) timing. Three blockages with 20% open area are compared to the fully open baseline case under two operating conditions: 2.41 bar brake mean effective pressure (bmep) at 1600 rpm, and 0.78 bar bmep at 1200 rpm. The blocked areas are shaped to create different levels of swirl, tumble, and cross-tumble. Crank-angle resolved pressures have been acquired, including cylinders 1 and 4, intake runners 1 and 4 upstream and downstream of the blockage, and exhaust runners 1 and 4.
Technical Paper

Anti-Shudder Property of Automatic Transmission Fluids - A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2000-06-19
2000-01-1870
In recent years, the slip lock-up mechanism has been adopted widely, because of its fuel efficiency and its ability to improve NVH. This necessitates that the automatic transmission fluid (ATF) used in automatic transmissions with slip lock-up clutches requires anti-shudder performance characteristics. The test methods used to evaluate the anti-shudder performance of an ATF can be classified roughly into two types. One is specified to measure whether a μ-V slope of the ATF is positive or negative, the other is the evaluation of the shudder occurrence in the practical vehicle. The former are μ-V property tests from MERCON® V, ATF+4®, and JASO M349-98, the latter is the vehicle test from DEXRON®-III. Additionally, in the evaluation of the μ-V property, there are two tests using the modified SAE No.2 friction machine and the modified low velocity friction apparatus (LVFA).
Technical Paper

Beam Element Leaf Spring Suspension Model Development and Assessment Using Road Load Data

2006-04-03
2006-01-0994
Knowledge of the loads experienced by a leaf spring suspension is required for the optimal design of the suspension components and frame. The most common method of representing leaf springs is the SAE 3 link model, which does not give good results in the lateral direction. In this paper, a beam element leaf spring model is developed. This model is validated using data obtained from laboratory tests done on leaf spring assemblies. The model is then subjected to actual road load data measured on the Proving Ground. Lastly, results from the beam element model are presented and compared with results obtained from proving ground tests. Overall, the beam element model gives good results in all directions except in situations where it is subjected to high fore/aft acceleration and high reverse braking events.
Technical Paper

Body/Chassis Dynamic Response Under Experimental Modal Test

2005-05-16
2005-01-2463
Mode management is an essential part of the design process for NVH performance. System resonances must be sufficiently separated to minimize interaction from source inputs and each other [1]. Such resonances are typically determined through experimental modal testing conducted in a lab environment under controlled and repeatable conditions. Global vehicle and suspension system response demonstrate soft nonlinear behavior, however. Their resonant frequencies may thus decrease under on-road input not reproducible in a lab environment. Subsequently, mode management charts derived from lab testing may not be representative of the vehicle's on-road dynamic response. This paper presents modal model determination methodologies, and examines suspension system and vehicle global dynamic response under lab modal test and operating conditions. Vehicle suspension modes measured under static and dynamic (rolling) conditions will be compared.
Technical Paper

Chassis Dynamometer Simulation of Tire Impact Response

2001-04-30
2001-01-1481
One of the major NVH concerns for automobile manufacturers is the response of a vehicle to the impact of the tire as it encounters a road discontinuity or bump. This paper describes methods for analyzing the impact response of a vehicle to such events. The test vehicle is driven on a dynamometer, on which a bump simulating cleat is mounted. The time histories of the cleat impact response of the vehicle can be classified as a transient and a repeated signal, which should be processed in a special way. This paper describes the related signal processing issues, which include converting the time data into a continous spectrum, determination of the correct scaling factor for the analyzed spectrum, and smoothing out harmonics and fluctuations in the signal. This procedure yields a smooth frequency spectrum with a correctly scaled amplitude, in which the frequency contents can be easily identified.
Technical Paper

Chrysler 45RFE a New Generation Light Truck Automatic Transmission

1999-03-01
1999-01-1260
The 45RFE is a new generation electronically controlled rear wheel drive automatic transmission. It employs real-time feedback, closed-loop modulation of shift functions to achieve outstanding shift quality and to meet demanding durability goals. It uses no shift valves; all friction element applications are effected with high-flow electro-hydraulic solenoid valves. A unique gear train arrangement of three planetary carriers allows all sun gears and annulus gears to have the same number of teeth respectively and use a common pinion gear in all carriers, resulting in significant manufacturing simplification. The three-planetary system is designed for four forward ratios of 3.00, 1.67, 1.00 and 0.75 and one reverse gear ratio equal to the low gear ratio. A fifth ratio of 1.50 is used only in certain kick-down shift sequences for highway passing. A sixth forward ratio, an additional overdrive ratio of 0.67, is available in the hardware.
Technical Paper

Chrysler 45RFE: A New Generation Real-Time Electronic Control RWD Automatic Transmission

1999-03-01
1999-01-0755
The 45RFE is a new generation electronically controlled rear wheel drive transmission. It employs real-time feedback, closed-loop modulation of shift functions to achieve excellence in shift quality and to meet severe durability goals. The 45RFE uses no shift valves; all friction element applications are effected with high-flow electro-hydraulic solenoid valves. A unique gear train arrangement of three planetary carriers allows all sun and annulus gears to have identical numbers of teeth and to use common pinion gears in all carriers. This results in substantial manufacturing simplification. The three-planetary system is designed for four forward ratios of 3.00, 1.67, 1.00 and 0.75 and one reverse gear ratio equal to the low gear ratio. A fifth ratio of 1.50 is used mainly in certain kick-down shift sequences for highway passing. A sixth forward ratio, an additional overdrive ratio of 0.67, is available in the hardware.
Technical Paper

Comparison of Parametric and Non-Parametric Methods for Determining Injury Risk

2003-03-03
2003-01-1362
This paper contains a review of methods for deriving risk curves from biomechanical data obtained from impact experiments on human surrogates. It covers many of the problems and pitfalls of obtaining realistic human risk curves from impact experiments. The strength and weakness of both parametric and non-parametric methods are evaluated. The limitations of standard analysis of censored impact test data are presented. Methods are given for determining risk curves from both doubly censored data and data obtained from impacts to body regions in which there are more than one mechanism of injury. A detailed set of examples is presented in which different experimental data are analyzed using the Consistent Threshold method and the logistic approach. Finally risk curves for published data are presented for the femur, head, thorax, and neck.
Technical Paper

Development of a Nonlinear Shock Absorber Model for Low-Frequency NVH Applications

2003-03-03
2003-01-0860
This paper dis cusses the development of a nonlinear shock absorber model for low-frequency CAE-NVH applications of body-on-frame vehicles. In CAE simulations, the shock absorber is represented by a linear damper model and is found to be inadequate in capturing the dynamics of shock absorbers. In particular, this model neither captures nonlinear behavior of shock absorbers nor distinguishes between compression and rebound motions of the suspension. Such an inadequacy limits the utility of CAE simulations in understanding the influence of shock absorbers on shake performance of body-on-frame vehicles in the low frequency range where shock absorbers play a significant role. Given this background, it becomes imperative to develop a shock absorber model that is not only sophisticated to describe shock absorber dynamics adequately but also simple enough to implement in full-vehicle simulations. This investigation addresses just that.
Technical Paper

Development of an Engine Test Cell for Rapid Evaluation of Advanced Powertrain Technologies using Model-Controlled Dynamometers

2006-04-03
2006-01-1409
Current engine development processes typically involve extensive steady-state and simple transient testing in order to characterize the engine's fuel consumption, emissions, and performance based on several controllable inputs such as throttle, spark advance, and EGR. Steady-state and simple transient testing using idealistic load conditions alone, however, is no longer sufficient to meet powertrain development schedule requirements. Mapping and calibration of an engine under transient operation has become critically important. And, independent engine development utilizing accelerated techniques is becoming more attractive. In order to thoroughly calibrate new engines in accelerated fashion and under realistic transient conditions, more advanced testing is necessary.
Technical Paper

Effect of Thermal Treatments and Carbon Potential on Bending Fatigue Performance of SAE 4320 Gear Steel

1999-03-01
1999-01-0603
This project investigated the effect of carburizing carbon-potential and thermal history on the bending fatigue performance of carburized SAE 4320 gear steel. Modified-Brugger cantilever bending fatigue specimens were carburized at carbon potentials of 0.60, 0.85, 1.05, and 1.25 wt. pct. carbon, and were either quenched and tempered or quenched, tempered, reheated, quenched, and tempered. The reheat treatment was designed to lower the solute carbon content in the case through the formation of transition carbides and refine the prior austenite grain size. Specimens were fatigue tested in a tension/tension cycle with a minimum to maximum stress ratio of 0.1. The bending fatigue results were correlated with case and core microstructures, hardness profiles, residual stress profiles, retained austenite profiles, and component distortion.
Technical Paper

Effect of Tire Stiffness on Vehicle Loads

2005-04-11
2005-01-0825
Tire stiffness can have a significant effect on the spindle and component loads. While its’ effect on the component loads may show a different trend. This paper deals with data acquisition loads using Wheel Force Transducer (WFT) with 17 inch, 18 inch and 20 inch tires and shows how the spindle loads changed for different tire. These loads are applied on the analytical suspension model to generate both component and the body attachment loads. Some of the measured channels are correlated for all the wheel sizes for multiple events to ensure the confidence in the model. It is found that even if spindle loads are increased with tire stiffness, the component loads do not necessarily show a similar trend. This paper studies why higher spindle forces do not always give higher component loads and what are the possible alternatives one may look into to shortlist or select one set of loads over the other.
Technical Paper

Engine Mount Tuning for Optimal Idle and Road Shake Response of Rear-Wheel-Drive Vehicles

2005-05-16
2005-01-2528
Engine mount tuning is a multi-disciplinary exercise since it affects Idle-shake, Road-shake and powertrain noise response. Engine inertia is often used as a tuned absorber for controlling suspension resonance related road-shake issues. Last but not least, vehicle ride and handling may also be affected by mount tuning. In this work, Torque-Roll-Axis (TRA) decoupling of the rigid powertrain was used as a starting point for mount tuning. Nodal point of flexible powertrain bending was used to define the envelop for transmission mount locations. The frequency corresponding to the decoupled roll mode of the rigid powertrain was then adjusted for idle-shake and road-shake response management. The TRA decoupling procedure, cast as a multi-objective optimization problem, was applied to a body-on-frame sport-utility vehicle powertrain system. The process outlined in this work was verified by exercising a fullvehicle finite element model.
Technical Paper

Experimental Modal Methodologies for Quantification of Body/Chassis Response to Brake Torque Variation

2007-05-15
2007-01-2343
Brake torque variation is a source of objectionable NVH body/chassis response. Such input commonly results from brake disk thickness variation. The NVH dynamic characteristics of a vehicle can be assessed and quantified through experimental modal testing for determination of mode resonance frequency, damping property, and shape. Standard full vehicle modal testing typically utilizes a random input excitation into the vehicle frame or underbody structure. An alternative methodology was sought to quantify and predict body/chassis sensitivity to brake torque variation. This paper presents a review of experimental modal test methodologies investigated for the reproduction of vehicle response to brake torque variation in a static laboratory environment. Brake caliper adapter random and sine sweep excitation input as well as body sine sweep excitation in tandem with an intentionally locked brake will be detailed.
Technical Paper

Grammatical Evolution Based Tool for Predicting Multivariable Response Surface for Laser Lap Welding

2008-04-14
2008-01-1372
The problem of predicting the quality of weld is critical to manufacturing. A great deal of data is collected under multiple conditions to predict the quality. The data generated at Daimler Chrysler has been used to develop a model based on grammatical evolution. Grammatical Evolution Technique is based on Genetic Algorithms and generates rules from the data which fit the data. This paper describes the development of a software tool that enables the user to choose input variables such as the metal types of top and bottom layers and their thickness, intensity and speed of laser beam, to generate a three dimensional map showing weld quality. A 3D weld quality surface can be generated in response to any of the two input variables picked from the set of defining input parameters. This tool will enable the user to pick the right set of input conditions to get an optimal weld quality. The tool is developed in Matlab with Graphical User Interface for the ease of operation.
Technical Paper

Heat Transfer Enhancement through Impingement of Flows and its Application in Lock-up Clutches

2005-04-11
2005-01-1936
An impinging-flow based methodology of enhancing the heat transfer in the grooves of a lockup clutch is proposed and studied. In order to evaluate its efficacy and reveal the mechanism, the three-dimensional flow within the groove was solved as a conjugate heat transfer problem in a rotating reference frame using the commercial CFD code FLUENT. The turbulence characteristics were predicted using k-ε model. The comparison of cooling effect was made between a simple baseline groove pattern and a typical flow-impingement based groove pattern of the same groove-to-total area ratio in terms of heat rejection ratio, maximum surface temperature, and heat transfer coefficient. It is found that more heat can be rejected with the impinging-flow based groove from the friction surface than with the baseline while the maximum surface temperature is lower in the former case.
Technical Paper

Improving Low Frequency Torsional Vibrations NVH Performance through Analysis and Test

2007-05-15
2007-01-2242
Low frequency torsional vibrations can be a significant source of objectionable vehicle vibrations and in-vehicle boom, especially with changes in engine operation required for improved fuel economy. These changes include lower torque converter lock-up speeds and cylinder deactivation. This paper has two objectives: 1) Examine the effect of increased torsional vibrations on vehicle NVH performance and ways to improve this performance early in the program using test and simulation techniques. The important design parameters affecting vehicle NVH performance will be identified, and the trade-offs required to produce an optimized design will be examined. Also, the relationship between torsional vibrations and mount excursions, will be examined. 2) Investigate the ability of simulation techniques to predict and improve torsional vibration NVH performance. Evaluate the accuracy of the analytical models by comparison to test results.
X