Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

32 Development of Silent Chain Drive System for Motorcycles

2002-10-29
2002-32-1801
Examining the noise reduction of a motorcycle, the requirement of an effective method of reducing a drive chain noise has been a pending issue similarly to noise originating from an engine or exhaust system, etc. Through this study, it became clear that the mechanism of chain noise could be classified into two; low frequency noise originated from cordal action according to the degree of chain engagement and high frequency noise generated by impact when a chain roller hits sprocket bottom. An improvement of urethane resin damper shape, mounted on a drive side sprocket, was effective for noise reduction of the former while our development of a chain drive that combined an additional urethane resin roller with an iron roller worked well for the latter. The new chain system that combined this new idea has been proven to be capable of reducing the chain noise to half compared with a conventional system.
Technical Paper

3D-PIV Measurement and Visualization of Streamlines Around a Standard SAE Vehicle Model

2011-04-12
2011-01-0161
In CFD (Computational Fluid Dynamics) verification of vehicle aerodynamics, detailed velocity measurements are required. The conventional 2D-PIV (Two Dimensional Particle Image Velocimetry) needs at least twice the number of operations to measure the three components of velocity ( u,v,w ), thus it is difficult to set up precise measurement positions. Furthermore, there are some areas where measurements are rendered impossible due to the relative position of the object and the optical system. That is why the acquisition of detailed velocity data around a vehicle has not yet been attained. In this study, a detailed velocity measurement was conducted using a 3D-PIV measurement system. The measurement target was a quarter scale SAE standard vehicle model. The wind tunnel system which was also designed for a quarter scale car model was utilized. It consisted of a moving belt and a boundary suction system.
Technical Paper

A Computerized Optimization Method Of Engine Mounting System

2003-05-05
2003-01-1461
This paper presents a method for optimization design of an engine mounting system subjected to some constraints. The engine center of gravity, the mount stiffness rates, the mount locations and/or their orientations with respect to the vehicle can be chosen as design variables, but some of them are given in advance or have limitations because of the packaging constraints on the mount locations, as well as the individual mount rate ratio limitations imposed by manufacturability. A computer program, called DynaMount, has been developed that identifies the optimum design variables for the engine mounting system, including decoupling mode, natural frequency placement, etc.. The degree of decoupling achieved is quantified by kinetic energy distributions calculated for each of the modes. Several application examples are presented to illustrate the validity of this method and the computer program.
Technical Paper

A New Way of Electrical/Electronic Systems Endurance Testing of Vehicles in a Real World Environment Prior to Production Launch

2001-03-05
2001-01-1101
With the increasing emphasis on Systems Engineering, there is a need to ensure that Electrical/Electronic (E/E) Systems Endurance Testing of vehicles, in a real world environment, prior to Production Launch, is performed in a manner and at a technological level that is commensurate with the high level of electronics and computers in contemporary vehicles. Additionally, validating the design and performance of individual standalone electronic systems and modules “on the bench” does not guarantee that all the permutations and combinations of real-world hardware, software, and driving conditions are taken into account. Traditional Proving Ground (PG) vehicle testing focuses mainly on powertrain durability testing, with only a simple checklist being used by the PG drivers as a reminder to cycle some of the electrical components such as the power window switches, turn signals, etc.
Technical Paper

A Study of Compatibility Test Procedure in Frontal Impact

2003-05-19
2003-06-0168
The purpose of this study is to examine compatibility test procedures proposed in the IHRA Vehicle Compatibility Working Group. Various crash tests were conducted with different vehicle weights and stiffness in our previous study, and each of the compatibility problems, namely mass; stiffness and geometric incompatibility were identified in these tests. In order to improve the compatibility, it is necessary to evaluate and control relevant vehicle characteristics of compatibility in test procedures. According to the IHRA study, relevant aspects for compatibility in frontal impact are: Good structural interaction; Frontal stiffness matching; Maintaining passenger compartment integrity; Control the deceleration time histories of impacting cars.
Technical Paper

A Study of Forces Acting on Rings for Metal Pushing V-Belt Type CVT

1997-02-24
970686
Four forces act in rings for a metal pushing V-belt. These forces are: two kinds of intercepting forces which prevent blocks from going outside of pulleys (one caused by pulley thrust, the other caused by centrifugal force), frictional force acting between the rings and the blocks, and bending force in longitudinal direction. In the previous paper (1)(2)(3)(5), distribution of three forces, excluding centrifugal force, were presented at low belt speed. We successfully measured all four kinds of forces including centrifugal force continuously at practical operation conditions for layered rings. In this paper, distribution of these four forces on the innermost ring is described at steady states.
Technical Paper

A Study of Vibration Reducing Effect on Vehicle Dynamics by Hydraulic Damper on Body Structure

2019-04-02
2019-01-0171
This research investigated the mechanism of the effects of hydraulic dampers, which are attached to vehicle body structures and are known by experience to suppress vehicle body vibration and enhance ride comfort and steering stability. In investigating the mechanism, we employed quantitative data from riding tests, and analytical data from simplified vibration models. In our assessment of ride comfort in riding tests using vehicles equipped with hydraulic dampers, we confirmed effects reducing body floor vibration in the low-frequency range. We also confirmed vibration reduction in unsprung suspension parts to be a notable mechanical characteristic which merits close attention in all cases. To investigate the mechanism of the vibration reduction effect in unsprung parts, we considered a simplified vibration model, in which the engine and unsprung parts, which are rigid, are linked to the vehicle body, which is an elastic body equipped with hydraulic dampers.
Technical Paper

Aerodynamic Development of the New Honda FIT/JAZZ

2015-04-14
2015-01-1535
This paper discusses the characteristic flow field of the new Honda FIT/Jazz as determined from the aerodynamic development process, and introduces the technique that reduced aerodynamic drag in a full model change. The new FIT was the first model to take full advantage of the Flow Analysis Simulation tool (FAST), our in-house CFD system, in its development. The FAST system performs aerodynamic simulation by automatically linking the exterior surface design with a predefined platform layout. This allows engineers to run calculations efficiently, and the results can be shared among vehicle stylists and aerodynamicists. Optimization of the exterior design gives the new FIT a moderate pressure peak at the front bumper corner as compared to the previous model, resulting in a smaller pressure difference between the side and underbody.
Technical Paper

Aerodynamic Performance Evaluation System at the Early Concept Stage of Automotive Styling Development Based on CFD

2016-04-05
2016-01-1584
An aerodynamic styling evaluation system employed at an early automotive development stage was constructed. The system based on CFD consists of exterior model morphing, computational mesh generation, flow calculation and result analysis, and the process is automatically and successively executed by process automation software. Response surfaces and a parallel coordinates chart output by the system allow users to find a well-balanced exterior form, in terms of aerodynamics and exterior styling, in a wide design space which are often arduous to be obtained by a conventional CAE manner and scale model wind tunnel testing. The system was designed so that 5-parameter study is completed within approximately two days, and consequently, has been widely applied to actual exterior styling development. An application for a hatchback vehicle is also introduced as an actual example.
Technical Paper

Analysis on In-Cylinder Flow by Means of LDA, PIV and Numerical Simulation under Steady State Flow Condition

2008-04-14
2008-01-1063
This paper describes the evaluation of flow characteristics inside a model engine cylinder using particle image velocimetry (PIV), laser Doppler anemometry (LDA), and numerical simulation by Partial Cells in Cartesian coordinate (PCC) method. The main goal of the study is to clarify the differences in the velocity characteristics obtained by these methods. The model engine head has a four-valve system. Single- and dual- valve opening conditions of the model engine head were tested by a steady flow test rig. The flow structures were completely different for these valve opening conditions. The mean velocities and their distributions obtained by the three methods show satisfactory agreement. However, there were differences in the turbulence intensities under several conditions and measuring positions. Taylor's hypothesis in the integral length scale of turbulence was also compared with single LDA and PIV measurements.
Technical Paper

Anti-Shudder Property of Automatic Transmission Fluids - A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2000-06-19
2000-01-1870
In recent years, the slip lock-up mechanism has been adopted widely, because of its fuel efficiency and its ability to improve NVH. This necessitates that the automatic transmission fluid (ATF) used in automatic transmissions with slip lock-up clutches requires anti-shudder performance characteristics. The test methods used to evaluate the anti-shudder performance of an ATF can be classified roughly into two types. One is specified to measure whether a μ-V slope of the ATF is positive or negative, the other is the evaluation of the shudder occurrence in the practical vehicle. The former are μ-V property tests from MERCON® V, ATF+4®, and JASO M349-98, the latter is the vehicle test from DEXRON®-III. Additionally, in the evaluation of the μ-V property, there are two tests using the modified SAE No.2 friction machine and the modified low velocity friction apparatus (LVFA).
Technical Paper

Attempts for Reduction of Rear Window Buffeting Using CFD

2005-04-11
2005-01-0603
This paper summarizes the major activities of CFD study on rear window buffeting of production vehicles during the past two years at DaimlerChrysler. The focus of the paper is the attempt to find suitable solutions for buffeting suppression using a developed procedure of CFD simulation with commercial software plus FFT acoustic post-processing. The analysis procedure has been validated using three representative production vehicles and good correlation with wind tunnel tests has been attained which has gained the confidence in solving the buffeting problem. Several attempts have been proposed and tried to find solution for buffeting reduction. Some of them are promising, but feasibility and manufacturability still need discussion. In order to find suitable solution for buffeting reduction, more basic research is necessary, more ideas should be collected, and more joint efforts of CFD and testing are imperative.
Technical Paper

Axle Imbalance Measurement and Balancing Strategies

2007-05-15
2007-01-2238
This paper summarizes a study on axle balance measurement and balancing strategies. Seven types of axles were investigated. Test samples were randomly selected from products. Two significant development questions were set out to be answered: 1) What is the minimum rotational speed possible in order to yield measured imbalance readings which correlated to in-vehicle imbalance-related vibration. What is the relationship between the measured imbalance and rotational speed. To this end, the imbalance level of each axle was measured using a test rig with different speeds from 800 to 4000 rpm with 200 rpm increments. 2) Is it feasible to balance axle sub-assemblies only and still result in a full-assembly that satisfies the assembled axle specification? To this end, the sub-assemblies were balanced on a balance machine to a specified level. Then with these balanced sub-assemblies, the full assemblies were completed and audited on the same balance test rig in the same way.
Technical Paper

Beam Element Leaf Spring Suspension Model Development and Assessment Using Road Load Data

2006-04-03
2006-01-0994
Knowledge of the loads experienced by a leaf spring suspension is required for the optimal design of the suspension components and frame. The most common method of representing leaf springs is the SAE 3 link model, which does not give good results in the lateral direction. In this paper, a beam element leaf spring model is developed. This model is validated using data obtained from laboratory tests done on leaf spring assemblies. The model is then subjected to actual road load data measured on the Proving Ground. Lastly, results from the beam element model are presented and compared with results obtained from proving ground tests. Overall, the beam element model gives good results in all directions except in situations where it is subjected to high fore/aft acceleration and high reverse braking events.
Technical Paper

Body/Chassis Dynamic Response Under Experimental Modal Test

2005-05-16
2005-01-2463
Mode management is an essential part of the design process for NVH performance. System resonances must be sufficiently separated to minimize interaction from source inputs and each other [1]. Such resonances are typically determined through experimental modal testing conducted in a lab environment under controlled and repeatable conditions. Global vehicle and suspension system response demonstrate soft nonlinear behavior, however. Their resonant frequencies may thus decrease under on-road input not reproducible in a lab environment. Subsequently, mode management charts derived from lab testing may not be representative of the vehicle's on-road dynamic response. This paper presents modal model determination methodologies, and examines suspension system and vehicle global dynamic response under lab modal test and operating conditions. Vehicle suspension modes measured under static and dynamic (rolling) conditions will be compared.
Technical Paper

CAE Fatigue Prediction of Fuel Tank Straps using Proving Ground Loads

2005-04-11
2005-01-1405
The durability of fuel tank straps is essential for vehicle safety. Extensive physical tests are conducted to verify designs for durability. Due to the complexity of the loads and the fuel-to-tank interaction, computer-aided-engineering (CAE) simulation has had limited application in this area. This paper presents a CAE method for fuel tank strap durability prediction. It discusses the analytical loads, modeling of fuel-to-tank interaction, dynamic analysis methods, and fatigue analysis methods. Analysis results are compared to physical test results. This method can be used in either a fuel-tank-system model or a full vehicle model. It can give directional design guidance for fuel tank strap durability in the early stages of product development to reduce vehicle development costs.
Technical Paper

Clamp Load Consideration in Fatigue Life Prediction of a Cast Aluminum Wheel Using Finite Element Analysis

2004-03-08
2004-01-1581
Loads generated during assembly may cause significant stress levels in components. Under test conditions, these stresses alter the mean stress which in turn, alters the fatigue life and critical stress area of the components as well. This paper describes the Finite Element Analysis (FEA) procedure to evaluate behavior of a cast aluminum wheel subjected to the rotary fatigue test condition as specified in the SAE test procedure (SAE J328 JUN94). Fatigue life of the wheel is determined using the S-N approach for a constant reversed loading condition. In addition, fatigue life predictions with and without clamp loads are compared. It is concluded that the inclusion of clamp load is necessary for better prediction of the critical stress areas and fatigue life of the wheel.
Technical Paper

Comparison of Three Active Chassis Control Methods for Stabilizing Yaw Moments

1994-03-01
940870
Using stabilizing yaw-moment diagrams, the authors analyzed three methods of active chassis control for their effect and effective ranges during cornering maneuvers. The following results were obtained: controlling the transverse distribution of driving and braking forces cancels the changes in a vehicle's dynamic characteristics caused by acceleration and deceleration. Controlling the distribution of roll stiffness is only effective in ranges with high lateral acceleration, and the effect varies depending on the longitudinal weight distribution. Controlling the rear wheel steering angle is most effective in a range with a small side slip angle, but this effect decreases with an increase in the angle, especially during deceleration.
Technical Paper

Control Technology of Brake-by-Wire System for Super-Sport Motorcycles

2010-04-12
2010-01-0080
Super-sport motorcycles have shorter wheelbases than other category motorcycles. Due to this, strong braking occasionally causes large pitching motions to occur, including rear-wheel-lift. In order to reduce such pitching motions and achieve an effective braking force, the authors have developed a brake-by-wire system that uses a pressure sensor to detect the braking input pressure and an electric actuator to variably control the hydraulic pressure. This system makes it possible to precisely control the braking force compared with the previous ABS. Large pitching control was performed by the distribution of a front wheel and a rear-wheel braking forces, CBS (Combined Brake System), by using electronic control, and Brake-by-Wire has been suitable for sport riding. As a result, stable braking performance could be obtained without spoiling the handling characteristics of super-sport motorcycles.
Technical Paper

Correlation Tests Between Japanese Full-Scale Automotive Wind Tunnels Using the Correction Methods for Drag Coefficient

2005-04-11
2005-01-1457
This paper describes results of the correlation tests between several full-scale automotive wind tunnels in Japan. The tests were carried out during FY 2003 by members of the working group for wind tunnel correlation test, which was organized in JSAE Vehicle Aerodynamics Research Committee. Five wind tunnels were selected, i.e., three open test section type wind tunnels and two closed ones. Four test models were selected, i.e., sedan, station wagon, minivan and hatch back car, all of which are current production models. Tests were done with EADE test conditions. Correlation formulas for drag coefficient, which are based on the previous methods by Mercker and Wiedemann [13] and Mercker [3, 10] respectively for open and closed test section type wind tunnels, were used. Also considered were the differences of the boundary layer thickness between five wind tunnels.
X