Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Complex Systems Method Applied to Identify Carbon Dioxide Emission Reductions for Light-Duty Vehicles for the 2020-2025 Timeframe

2012-04-16
2012-01-0360
The U.S. Environmental Protection Agency, U.S. Department of Transportation's National Highway and Traffic Safety Administration, and the California Air Resources Board have recently released proposed new regulations for greenhouse gas emissions and fuel economy for light-duty vehicles and trucks in model years 2017-2025. These proposed regulations intend to significantly reduce greenhouse gas emissions and increase fleet fuel economy from current levels. At the fleet level, these rules the proposed regulations represent a 50% reduction in greenhouse gas emissions by new vehicles in 2025 compared to current fleet levels. At the same time, global growth, especially in developing economies, should continue to drive demand for crude oil and may lead to further fuel price increases. Both of these trends will therefore require light duty vehicles (LDV) to significantly improve their greenhouse gas emissions over the next 5-15 years to meet regulatory requirements and customer demand.
Technical Paper

Development of Truck Engine Technologies for Use with Fischer-Tropsch Fuels

2001-09-24
2001-01-3520
The Fischer-Tropsch (FT) process can be used to synthesize diesel fuels from a variety of energy sources, including coal, natural gas and biomass. Diesel fuels produced from the FT process are essentially sulfur-free, have very low aromatic content, and have excellent ignition characteristics. Because of these favorable attributes, FT diesel fuels may offer environmental benefits over transportation fuels derived from crude oil. Previous tests have shown that FT diesel fuel can be used in unmodified engines and have been shown to lower regulated emissions. Whereas exhaust emissions reductions from these previous studies have been impressive, this paper demonstrates that far greater exhaust emissions reductions are possible if the diesel engine is optimized to exploit the properties of the FT fuels. A Power Stroke 7.3 liter turbocharged diesel engine has been modified for use with FT diesel.
Technical Paper

EBDI® - Application of a Fully Flexible High BMEP Downsized Spark Ignited Engine

2010-04-12
2010-01-0587
The Ethanol-Boosted Direct Injection (EBDI) demonstrator engine is a collaborative project led by Ricardo targeted at reducing the fuel consumption of a spark-ignited engine. This paper describes the design challenges to upgrade an existing engine architecture and the synergistic use of a combination of technologies that allows a significant reduction in fuel consumption and CO₂ emissions. Features include an extremely reduced displacement for the target vehicle, 180 bar cylinder pressure capability, cooled exhaust gas recirculation, advanced boosting concepts and direct injection. Precise harmonization of these individual technologies and control algorithms provide optimized operation on gasoline of varying octane and ethanol content.
Journal Article

Studies on the Impact of 300 MPa Injection Pressure on Engine Performance, Gaseous and Particulate Emissions

2013-04-08
2013-01-0897
An investigation has been carried out to examine the influence of up to 300 MPa injection pressure on engine performance and emissions. Experiments were performed on a 4 cylinder, 4 valve / cylinder, 4.5 liter John Deere diesel engine using the Ricardo Twin Vortex Combustion System (TVCS). The study was conducted by varying the injection pressure, Start of Injection (SOI), Variable Geometry Turbine (VGT) vane position and a wide range of EGR rates covering engine out NOx levels between 0.3 g/kWh to 2.5 g/kWh. A structured Design of Experiment approach was used to set up the experiments, develop empirical models and predict the optimum results for a range of different scenarios. Substantial fuel consumption benefits were found at the lowest NOx levels using 300 MPa injection pressure. At higher NOx levels the impact was nonexistent. In a separate investigation a Cambustion DMS-500 fast particle spectrometer, was used to sample and analyze the exhaust gas.
X