Refine Your Search

Topic

Author

Search Results

Technical Paper

A Comprehensive Study of Door Slam

2004-03-08
2004-01-0161
As part of an ongoing technical collaboration between Ford and Rouge Steel Company, a comprehensive study of door slam event was undertaken. The experimental phase of the project involved measurements of accelerations at eight locations on the outer panel and strains on six locations of the inner panel. Although slam tests were conducted with window up and window down, results of only one test is presented in this paper. The CAE phase of the project involved the development of suitable “math” model of the door assembly and analysis methodology to capture the dynamics of the event. The predictability of the CAE method is examined through detailed comparison of accelerations and strains. While excellent agreement between CAE and test results of accelerations on the outer panel is obtained, the analysis predicts higher strains on the inner panel than the test. In addition, the tendency of outer panel to elastically buckle is examined.
Technical Paper

A Computational Methodology for Fatigue Life Prediction Under Multiaxial Non-Proportional Loading

2001-03-05
2001-01-0837
A methodology for predicting the fatigue initiation life in metals experiencing multiaxial non-proportional loading is presented. The methodology utilizes nonlinear finite-element analysis to determine the stress distribution of the loaded component. This distribution is used in conjunction with a physically based damage law to determine the cycles to failure. The damage law is based on the fatigue prediction method introduced by Dang Van [1], and further developed by Papadopoulos [2] and Morel [3]. The fatigue damage initiation is treated as the persistent crystalline slip phenomenon taking place on the order of a grain or few grains. The damage variable is chosen to be the accumulated plastic strain at this scale. The initiation life is determined when the damage variable reaches a critical value. The developed methodology is applicable to both in-phase and out-of-phase loading, without any empirical adjustment parameter.
Technical Paper

A Design Study to Determine the Impact of Various Parameters on Door Acoustics

2003-05-05
2003-01-1430
Once the design of a door sheetmetal and accessories is confirmed, the acoustics of the door system depends on the sound package assembly. This essentially consists of a watershield which acts as a barrier and a porous material which acts as an absorber. The acoustical performance of the watershield and the reverberant sound build-up in the door cavity control the performance. This paper discusses the findings of a design study that was developed based on design of experiments (DOE) concepts to determine which parameters of the door sound package assembly are important to the door acoustics. The study was based on conducting a minimum number of tests on a five factor - two level design that covered over 16 different design configurations. In addition, other measurements were made that aided in developing a SEA model which is also compared with the findings of the results of the design study.
Technical Paper

A Failure Criterion for Stretch Bendability of Advanced High Strength Steels

2006-04-03
2006-01-0349
Studies in an Angular Stretch Bend Test (ASBT) have demonstrated that the failure location moves from the side wall to punch nose area. This occurs as the R/T ratio decreases below a certain limit and applies to most low carbon steels with the exception of Dual Phase (DP) steels. Such behavior in DP steels indicates that bending effects have a severe impact on the formability of DP materials. Therefore, the traditional criterion using the forming limit curve (FLC) is not suitable to assess the formability at punch radius areas for DP steels due in part to its uniqueness of unconventional microstructures. In this paper, a new failure criterion, ‘Bending-modified’ FLC (BFLC), is proposed by extending the traditional FLC using the “Stretch Bendability Index” (SBI) concept for the stretch bendability assessment.
Technical Paper

A Hybrid Method for Vehicle Axle Noise Simulation with Experimental Validation

2003-05-05
2003-01-1707
Recently, many authors have attempted to represent an automobile body in terms of experimentally derived frequency response functions (FRFs), and to couple the FRFs with a FEA model of chassis for performing a total system dynamic analysis. This method is called Hybrid FEA-Experimental FRF method, or briefly HYFEX. However, in cases where the chassis model does not include the bushing models, one can not directly connect the FRFs of the auto body to the chassis model for performing a total system dynamic analysis. In other cases when the chassis model includes the bushings, the bushing dynamic rates are modeled as constant stiffness rather than frequency dependent stiffness, the direct use of the HYFEX method will yield unsatisfactory results. This paper describes how the FRF's of the auto body and the frequency dependent stiffness data of the bushings can be combined with an appropriate mathematical formulation to better represent the dynamic characteristics of a full vehicle.
Technical Paper

A New Method for Obtaining FRF of a Structure in Area Where Impact Hammer Cannot Reach

2007-05-15
2007-01-2385
The Frequency Response Function (FRF) is a fundamental component to identifying the dynamic characteristics of a system. FRF's have a significant impact on modal analysis and root cause analysis of NVH issues. In most cases the FRF can be easily measured, but there are instances when the measurement is unobtainable due to spatial constraints. This paper outlines a simple experimental method for obtaining a high quality input-output FRF of a structure in areas where an impact hammer can not reach during impact testing. Traditionally, the FRF in such an area is obtained by using a load cell extender with a hammer impact excitation. A common problem with this device is a double hit, that yields unacceptable results.
Technical Paper

A Simple Approach to Selecting Automotive Body-in-White Primary-Structural Materials

2002-07-09
2002-01-2050
A simple strategy for building lightweight automobile body-in-whites (BIWs) is developed and discussed herein. Because cost is a critical factor, expensive advanced materials, such as carbon fiber composites and magnesium, must only be used where they will be most effective. Constitutive laws for mass savings under various loading conditions indicate that these materials afford greater opportunity for mass saving when used in bending, buckling or torsion than in tensile, shear or compression. Consequently, it is recommended that these advanced materials be used in BIW components subject to bending and torsion such as rails, sills, “A-B-C” pillars, etc. Furthermore, BIW components primarily subject to tension, compression, or shear, such as floor pans, roofs, shock towers, etc., should be made from lower cost steel. Recommendations for future research that are consistent with this strategy are included.
Technical Paper

AWD Driveline Isolation In SUV Vehicle

2005-05-16
2005-01-2287
The popularity of AWD passenger vehicles presents a challenge to provide car-like drive-train NVH within a relatively small package space. This paper describes a drive-train NVH case study in which analysis and test were used, in conjunction, to solve an NVH problem. Also, it details a systematic process of using the analytical model to identify and resolve similar problems. The particular problem for this case study is a noise and vibration issue occurring at 75 MPH primarily in the middle seat of an all-wheel drive vehicle. Tests indicated that it may be due to propeller shaft imbalance. Analysis results showed good correlation with the tests for that loading condition. Several solutions were identified, which were confirmed by both test and analysis. The most cost-effective of these solutions was implemented.
Technical Paper

Achieving Diesel Vehicle Appeal Part 1: Vehicle NVH Perspective

2005-05-16
2005-01-2484
This paper describes a diesel vehicle NVH development process which has been applied to achieve a number of best in class products in the European diesel marketplace. It focuses upon: Key diesel vehicle NVH issues Critical success factors in the NVH development process NVH methodologies, tools and techniques which support this process Case studies using results taken largely from a luxury sedan vehicle development program are used to highlight the issues and to demonstrate the success of this process in achieving a vehicle with high diesel appeal. The paper concludes with an insight of how this process is being adapted and refocused to reflect the anticipated requirements of the potential US diesel vehicle marketplace.
Technical Paper

Acoustic Development Differences Between Theoretical And Experimental Process for Automotive Exhaust System

2015-09-22
2015-36-0277
Acoustics, in a broad sense, is an essential product attribute in the automotive industry, therefore, it is relevant to study and compare theoretical and numerical predictions to experimental acoustic measurements, key elements of many acoustic development processes. The numerical methods used in the industry for acoustic predictions are widely used for exhaust system optimization. However, the numerical and theoretical predictions very often differ from experimental results, due to modeling simplifications, temperature variations (which have high influence on speed of sound), manufacturing variations in prototype parts among others. This article aims to demonstrate the relevant steps for acoustics development applied in automotive exhaust systems and present a comparative study between experimental tests and computer simulations results for each process. The exhaust system chosen for this development was intended for a popular car 4-cylinder 1.0-liter engine.
Technical Paper

Application of a Structural Reinforcing Material to Improve Vehicle NVH Characteristics

1999-09-28
1999-01-3223
Cavity reinforcement materials are used in the automotive industry to stiffen hollow cavities in vehicle body constructions. Typical areas of use include the engine rails, rocker panels, roof support or any other cavity in need of structural reinforcement. Use of these materials can allow for significant reductions in vehicle weight and increase structural stiffness with minimal impact to production tooling. Additional benefits can be gained by using the material as a physical barrier to the propagation of noise, water and dust. The objective of this paper is to describe a case study which implemented a new type of cavity reinforcing material to improve low frequency vehicle noise and vibration characteristics.
Technical Paper

Chassis Dynamometer Simulation of Tire Impact Response

2001-04-30
2001-01-1481
One of the major NVH concerns for automobile manufacturers is the response of a vehicle to the impact of the tire as it encounters a road discontinuity or bump. This paper describes methods for analyzing the impact response of a vehicle to such events. The test vehicle is driven on a dynamometer, on which a bump simulating cleat is mounted. The time histories of the cleat impact response of the vehicle can be classified as a transient and a repeated signal, which should be processed in a special way. This paper describes the related signal processing issues, which include converting the time data into a continous spectrum, determination of the correct scaling factor for the analyzed spectrum, and smoothing out harmonics and fluctuations in the signal. This procedure yields a smooth frequency spectrum with a correctly scaled amplitude, in which the frequency contents can be easily identified.
Technical Paper

Development of Transmission Loss Bench for Mufflers Based on the Transfer Matrix Method

2016-10-25
2016-36-0501
Acoustic components are used in automotive exhaust systems to minimize the noise from the engine and, consequently, to offer more comfort and sound quality to the consumer. Thus, analytical, experimental and numerical studies of these acoustic filters become important in engineering. In this regard, the aim of this article is to report the development of an experimental bench for acoustic transmission loss based on the transfer matrix method for application in studies of automotive mufflers and resonators. The validation of the method was performed by comparing the results obtained experimentally to predictions of numerical simulations and analytical calculations carried out in an acoustic expansion chamber and in a Helmholtz resonator. After the validation, experiments with different automotive mufflers having diverse internal configurations were carried out in order to study the different attenuation frequencies of the components.
Technical Paper

Development of a Nonlinear Shock Absorber Model for Low-Frequency NVH Applications

2003-03-03
2003-01-0860
This paper dis cusses the development of a nonlinear shock absorber model for low-frequency CAE-NVH applications of body-on-frame vehicles. In CAE simulations, the shock absorber is represented by a linear damper model and is found to be inadequate in capturing the dynamics of shock absorbers. In particular, this model neither captures nonlinear behavior of shock absorbers nor distinguishes between compression and rebound motions of the suspension. Such an inadequacy limits the utility of CAE simulations in understanding the influence of shock absorbers on shake performance of body-on-frame vehicles in the low frequency range where shock absorbers play a significant role. Given this background, it becomes imperative to develop a shock absorber model that is not only sophisticated to describe shock absorber dynamics adequately but also simple enough to implement in full-vehicle simulations. This investigation addresses just that.
Technical Paper

Durability, Acoustic Performance and Process Efficiencies of Absorbent Fibers for Muffler Filling

1999-05-17
1999-01-1655
Silencers are very often filled with absorbent fibers to optimize the acoustic performance, particularly when the volume is limited. The fibers have to meet several specifications concerning (1) acoustic damping as a function of frequency, (2) temperature stability, (3) processing, and (4) blow-out resistance. This paper will review the characteristic properties for continuous fibers including Advantex™ versus standard E Glass as well as discontinuous fibers such as basalt wool. The failure mechanism of the various fibers will be explored in detail. Thermal shock testing, single filament tensile strengths, and weight loss measurements will be used to contrast the failure mechanism of these fibers. Additionally, the acoustic performance of silencers filled with different fibers will be analyzed and compared. The selection of different filling materials is closely linked to the production process utilized.
Technical Paper

Effect of Thermal Treatments and Carbon Potential on Bending Fatigue Performance of SAE 4320 Gear Steel

1999-03-01
1999-01-0603
This project investigated the effect of carburizing carbon-potential and thermal history on the bending fatigue performance of carburized SAE 4320 gear steel. Modified-Brugger cantilever bending fatigue specimens were carburized at carbon potentials of 0.60, 0.85, 1.05, and 1.25 wt. pct. carbon, and were either quenched and tempered or quenched, tempered, reheated, quenched, and tempered. The reheat treatment was designed to lower the solute carbon content in the case through the formation of transition carbides and refine the prior austenite grain size. Specimens were fatigue tested in a tension/tension cycle with a minimum to maximum stress ratio of 0.1. The bending fatigue results were correlated with case and core microstructures, hardness profiles, residual stress profiles, retained austenite profiles, and component distortion.
Technical Paper

Engine Cooling Fan Noise and Vibration Problem Caused by a Switching Power Supply

2003-05-05
2003-01-1672
A 50 Hz Solid-State Relay (SSR) was used to provide pulse-width-modulated power to engine cooling fans for continuous speed control, to reduce airflow noise and improve efficiency. However, this caused the cooling fans to vibrate at the switching frequency and harmonics, thus degrading vehicle NVH performance. This paper describes the problem associated with SSR- powered cooling fans, including root-cause analysis, and identification of areas sensitive to vibration affected by the switching power supply. Based on our analysis, we found several solutions to the problem. Our production solution and some generic recommendations for shroud design are presented in the paper.
Technical Paper

Estimation Of Damping Loss Factors By Using The Hilbert Transform And Exponential Average Method

2001-04-30
2001-01-1408
The damping loss factor of a structural panel plays a significant role in its vibro-acoustic performance. The objective of this paper is to present a new procedure for evaluating the damping loss factors of these panels. Traditionally, the damping loss factors are determined by using the decay rate of the decay curves which are experimentally obtained from the structure. However, this is time consuming and the accuracy is limited by fluctuations in the decay curve. In this paper, the envelope signal of each decay curve is determined through its Hilbert transform, and the remaining small fluctuations in the envelope signal are further smoothed out by the exponential average method. Finally, the damping loss factor is estimated based on the smoothed envelope signal of each decay curve. A computer program has been developed to implement this procedure. It is shown that this procedure improves both accuracy and efficiency of the decay rate method for estimating damping loss factor.
Journal Article

Fatigue Behavior of Stainless Steel Sheet Specimens at Extremely High Temperatures

2014-04-01
2014-01-0975
Active regeneration systems for cleaning diesel exhaust can operate at extremely high temperatures up to 1000°C. The extremely high temperatures create a unique challenge for the design of regeneration structural components near their melting temperatures. In this paper, the preparation of the sheet specimens and the test set-up based on induction heating for sheet specimens are first presented. Tensile test data at room temperature, 500, 700, 900 and 1100°C are then presented. The yield strength and tensile strength were observed to decrease with decreasing strain rate in tests conducted at 900 and 1100°C but no strain rate dependence was observed in the elastic properties for tests conducted below 900°C. The stress-life relations for under cyclic loading at 700 and 1100°C with and without hold time are then investigated. The fatigue test data show that the hold time at the maximum stress strongly affects the stress-life relation at high temperatures.
Technical Paper

Grade and Gage Sensitivities to Oil-Canning Loads of a Door Assembly Considering Forming Effects

2004-03-08
2004-01-0164
A finite element methodology, based on implicit numerical integration procedure, for simulating oil-canning tests on Door assemblies is presented. The method takes into account nonlinearities due to geometry, material and contact between parts during deformation. The simulation results are compared with experimental observations. Excellent correlation between experimental observations and analytical predictions are obtained in these tests. Armed with the confidence in the methodology, simulations on a door assembly are conducted to study the gage and grade sensitivities of the outer panel. The sensitivity studies are conducted on three different grades of steel for the outer panel. Further studies are conducted to understand the effects of manufacturing (forming operation) on the oil canning behavior of door assembly. Results demonstrate the utility of the method in material selection during pre-program design of automotive structures.
X