Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

An Assessment of the Bottoming Cycle Operating Conditions for a High EGR Rate Engine at Euro VI NOx Emissions

2013-09-08
2013-24-0089
This paper investigates the application of a Bottoming Cycle (BC) applied to a 10-litre (L) heavy duty Diesel engine for potential improvements in fuel efficiency. With the main thermodynamic irreversibility in the BC due to the temperature difference between the heat source and the working fluid, a proper selection of the working fluid and its operating condition for a given waste heat is the key in achieving high overall conversion efficiency. The paper reviews a fluid selection methodology based on thermodynamic/thermo-physical and environmental/safety properties. Results are presented using seven pure, dry, isentropic and wet working fluids (synthetic, organic and inorganic) operating with expansion starting from the saturated vapour, superheated vapour, supercritical phase, saturated liquid, and two-phase. Efficiency improvements by recovering Charge Air Coolers (CAC) and Exhaust Gas Recirculation (EGR) cooler heat on two engine platforms were calculated.
Technical Paper

Data-driven Approach for Condition Assessment of a Diesel Engine Powered with Various Biodiesels

2023-04-11
2023-01-0422
In recent years, various biodiesels have been developed to decrease pollutant emissions from compression ignition engine. However, the current research focuses on reducing the pollutant components without considering the mechanical vibration that occurred due to the changes in fuel properties such as viscosity, calorific values, density, and bulk modulus. It is important to explore the relationships between fuel properties and engine vibration. Mechanical vibration could cause power loss and affect the lifetime of the engine. In this investigation, a lister-pitter 3-cylinder diesel engine was used to analyse the mechanical vibration of three different fuels including diesel, waste cooking oil biodiesel (WCOB), and lamb fat biodiesel (LFB). The high-frequency vibration sensors were mounted on the cylinder head to monitor and assess the vibration performance.
Technical Paper

Fuel Droplet Heating and Evaporation: Analysis of Liquid and Gas Phase Models

2007-01-23
2007-01-0019
Recently developed liquid and gas phase models for fuel droplet heating and evaporation, suitable for implementation into computational fluid dynamics (CFD) codes, are reviewed. The analysis is focused on the liquid phase model based on the assumption that the liquid thermal conductivity is infinitely large (infinite thermal conductivity (ITC) model), and the so called effective thermal conductivity (ETC) model. Seven gas phase models are compared. It is pointed out that the gas phase model, taking into account the finite thickness of the thermal boundary layer around the droplet predicts the evaporation time closest to the one based on the approximation of experimental data. In most cases, the droplet evaporation time depends strongly on the choice of the gas phase model. The dependence of this time on the choice of the liquid phase model, however, is weak if the droplet break-up processes are not taken into account.
Journal Article

High-Speed Thermographic Analysis of Diesel Injector Nozzle Tip Temperature

2022-03-29
2022-01-0495
The temperature of fuel injectors can affect the flow inside nozzles and the subsequent spray and liquid films on the injector tips. These processes are known to impact fuel mixing, combustion and the formation of deposits that can cause engines to go off calibration. However, there is a lack of experimental data for the transient evolution of nozzle temperature throughout engine cycles and the effect of operating conditions on injector tip temperature. Although some measurements of engine surface temperature exist, they have relatively low temporal resolutions and cannot be applied to production injectors due to the requirement for a specialist coating which can interfere with the orifice geometry. To address this knowledge gap, we have developed a high-speed infrared imaging approach to measure the temperature of the nozzle surface inside an optical diesel engine.
Technical Paper

Predictive CFD Auto-Tuning Approach for In-Cylinder Simulations of Two Small-Bore LDD Engines

2019-09-09
2019-24-0033
Tightening emission regulations and accelerating production cycles force engine developers to shift their attention towards virtual engineering tools. When simulating in-cylinder processes in commercial LDD DI engine development, the trade-off between run time and accuracy is typically tipped towards the former. High-fidelity simulation approaches which require little tuning would be desirable but require excessive computing resources. For this reason, industry still favors low-fidelity simulation approaches and bridges remaining uncertainties with prototyping and testing. The problem with low-fidelity simulations is that simplifications in the form of sub models introduce multi variable tuning parameter dependencies which, if not understood, impair the predictive nature of CFD simulations. In previous work, the authors have successfully developed a boundary condition dependent input parameter table.
Journal Article

Studies on the Impact of 300 MPa Injection Pressure on Engine Performance, Gaseous and Particulate Emissions

2013-04-08
2013-01-0897
An investigation has been carried out to examine the influence of up to 300 MPa injection pressure on engine performance and emissions. Experiments were performed on a 4 cylinder, 4 valve / cylinder, 4.5 liter John Deere diesel engine using the Ricardo Twin Vortex Combustion System (TVCS). The study was conducted by varying the injection pressure, Start of Injection (SOI), Variable Geometry Turbine (VGT) vane position and a wide range of EGR rates covering engine out NOx levels between 0.3 g/kWh to 2.5 g/kWh. A structured Design of Experiment approach was used to set up the experiments, develop empirical models and predict the optimum results for a range of different scenarios. Substantial fuel consumption benefits were found at the lowest NOx levels using 300 MPa injection pressure. At higher NOx levels the impact was nonexistent. In a separate investigation a Cambustion DMS-500 fast particle spectrometer, was used to sample and analyze the exhaust gas.
Technical Paper

The Influence of Injector Parameters on the Formation and Break-Up of a Diesel Spray

2001-03-05
2001-01-0529
The influences of injector nozzle geometry, injection pressure and ambient air conditions on a diesel fuel spray were examined using back-lighting techniques. Both stills and high speed imaging techniques were used. Operating conditions representative of a modern turbocharged aftercooled HSDI diesel engine were achieved in an optical rapid compression machine fitted with a common rail fuel injector. Qualitative differences in spray structure were observed between tests performed with short and long injection periods. Changes in the flow structure within the nozzle could be the source of this effect. The temporal liquid penetration lengths were derived from the high-speed images. Comparisons were made between different nozzle geometries and different injection pressures. Differences were observed between VCO (Valve Covers Orifice) and mini-sac nozzles, with the mini-sac nozzles showing a higher rate of penetration under the same conditions.
Journal Article

The Recuperated Split Cycle - Experimental Combustion Data from a Single Cylinder Test Rig

2017-09-04
2017-24-0169
The conventional Diesel cycles engine is now approaching the practical limits of efficiency. The recuperated split cycle engine is an alternative cycle with the potential to achieve higher efficiencies than could be achieved using a conventional engine cycle. In a split cycle engine, the compression and combustion strokes are performed in separate chambers. This enables direct cooling of the compression cylinder reducing compression work, intra cycle heat recovery and low heat rejection expansion. Previously reported analysis has shown that brake efficiencies approaching 60% are attainable, representing a 33% improvement over current advanced heavy duty diesel engine. However, the achievement of complete, stable, compression ignited combustion has remained elusive to date.
Technical Paper

Visual Analyses of End of Injection Liquid Structures and the Behaviour of Nozzle Surface-Bound Fuel in a Direct Injection Diesel Engine

2019-01-15
2019-01-0059
For efficiency, the majority of modern diesel engines implement multiple injection strategies, increasing the frequency of transient injection phases and thus, end of injection (EOI) events. Recent advances in diagnostic techniques have identified several EOI phenomena pertinent to nozzle surface wetting as a precursor for deposit formation and a potential contributor towards pollutant emissions. To investigate the underlying processes, highspeed optical measurements at the microscopic scale were performed inside a motored diesel engine under low load/idling conditions. Visualisation of the injector nozzle surface and near nozzle region permitted an indepth analysis of the post-injection phenomena and the behaviour of fuel films on the nozzle surface when the engine is not fired. Inspection of the high-speed video data enabled an interpretation of the fluid dynamics leading to surface wetting, elucidating the mechanisms of deposition and spreading.
X