Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Computerized Optimization Method Of Engine Mounting System

2003-05-05
2003-01-1461
This paper presents a method for optimization design of an engine mounting system subjected to some constraints. The engine center of gravity, the mount stiffness rates, the mount locations and/or their orientations with respect to the vehicle can be chosen as design variables, but some of them are given in advance or have limitations because of the packaging constraints on the mount locations, as well as the individual mount rate ratio limitations imposed by manufacturability. A computer program, called DynaMount, has been developed that identifies the optimum design variables for the engine mounting system, including decoupling mode, natural frequency placement, etc.. The degree of decoupling achieved is quantified by kinetic energy distributions calculated for each of the modes. Several application examples are presented to illustrate the validity of this method and the computer program.
Technical Paper

A Design Study to Determine the Impact of Various Parameters on Door Acoustics

2003-05-05
2003-01-1430
Once the design of a door sheetmetal and accessories is confirmed, the acoustics of the door system depends on the sound package assembly. This essentially consists of a watershield which acts as a barrier and a porous material which acts as an absorber. The acoustical performance of the watershield and the reverberant sound build-up in the door cavity control the performance. This paper discusses the findings of a design study that was developed based on design of experiments (DOE) concepts to determine which parameters of the door sound package assembly are important to the door acoustics. The study was based on conducting a minimum number of tests on a five factor - two level design that covered over 16 different design configurations. In addition, other measurements were made that aided in developing a SEA model which is also compared with the findings of the results of the design study.
Technical Paper

A Failure Criterion for Stretch Bendability of Advanced High Strength Steels

2006-04-03
2006-01-0349
Studies in an Angular Stretch Bend Test (ASBT) have demonstrated that the failure location moves from the side wall to punch nose area. This occurs as the R/T ratio decreases below a certain limit and applies to most low carbon steels with the exception of Dual Phase (DP) steels. Such behavior in DP steels indicates that bending effects have a severe impact on the formability of DP materials. Therefore, the traditional criterion using the forming limit curve (FLC) is not suitable to assess the formability at punch radius areas for DP steels due in part to its uniqueness of unconventional microstructures. In this paper, a new failure criterion, ‘Bending-modified’ FLC (BFLC), is proposed by extending the traditional FLC using the “Stretch Bendability Index” (SBI) concept for the stretch bendability assessment.
Technical Paper

A Fully Variable Mechanical Valvetrain with a Simple Moving Pivot

2005-04-11
2005-01-0770
A continuously variable lift, duration and phase mechanical lift mechanism is described, as applied to the intake valvetrain of a SOHC, 4-valve per cylinder, four-cylinder production engine. Improvements in fuel economy were sought by reduction of pumping losses and improved charge preparation, and optimization of WOT torque was attempted by variation of intake valve closing angle. Adjustment of the mechanism is achieved by movement of the pivot shaft for the rocker arms. The relationship between lift, duration and phase is predetermined at the design stage, and is fixed during operation. There is considerable design flexibility to achieve the envelope of lift curves deemed desirable. The operation of the mechanism is described, as are the development procedure, testing with fixed cams, some cycle simulation, friction testing on a separate rig and dyno testing results for idle, part load and WOT.
Technical Paper

A Grammatical Evolution Approach to System Identification of Laser Lap Welding

2006-04-03
2006-01-1614
Laser lap welding quality is a non-linear response based on a host of categorical and numeric material and process variables. This paper describes a Grammatical Evolution approach to the structure identification of the laser lap welding process and compares its performance with linear regression and a neuro-fuzzy inference system.
Technical Paper

A Model for On-Line Monitoring of In-Cylinder Residual Gas Fraction (RGF) and Mass Flowrate in Gasoline Engines

2006-04-03
2006-01-0656
In a gasoline engine, the unswept in-cylinder residual gas and introduction of external EGR is one of the important means of controlling engine raw NOx emissions and improving part load fuel economy via reduction of pumping losses. Since the trapped in-cylinder Residual Gas Fraction (RGF, comprised of both internal, and external) significantly affects the combustion process, on-line diagnosis and monitoring of in-cylinder RGF is very important to the understanding of the in-cylinder dilution condition. This is critical during the combustion system development testing and calibration processes. However, on-line measurement of in-cylinder RGF is difficult and requires an expensive exhaust gas analyzer, making it impractical for every application. Other existing methods, based on measured intake and exhaust pressures (steady state or dynamic traces) to calculate gas mass flowrate across the cylinder ports, provide a fast and economical solution to this problem.
Technical Paper

A Multiple Order Conformability Model for Uniform Cross-Section Piston Rings

2005-04-11
2005-01-1643
This paper examines the conformability of elastic piston rings to a distorted cylinder bore. Several bounds are available in the literature to help estimate the maximum allowable Fourier coefficient in a Fourier expansion of bore distortion: the analytically derived bounds in [7] and [8], and the semi-empirically derived bounds discussed in [9]. The underlying assumptions for each set of analytic bounds are examined and a multiple order algorithm is derived. The proposed algorithm takes account of multiple orders of distortion at once. It is tested with finite element (FE) data and compared to the classical bound approach. The results indicate that the bounds in [7] are compatible with linear elasticity theory (LET), whereas the bounds in [8] are not. Furthermore, numerical evidence indicates that the present multiple order algorithm can predict seal breaches more accurately than either of the other analytic bounds.
Technical Paper

A New Way of Electrical/Electronic Systems Endurance Testing of Vehicles in a Real World Environment Prior to Production Launch

2001-03-05
2001-01-1101
With the increasing emphasis on Systems Engineering, there is a need to ensure that Electrical/Electronic (E/E) Systems Endurance Testing of vehicles, in a real world environment, prior to Production Launch, is performed in a manner and at a technological level that is commensurate with the high level of electronics and computers in contemporary vehicles. Additionally, validating the design and performance of individual standalone electronic systems and modules “on the bench” does not guarantee that all the permutations and combinations of real-world hardware, software, and driving conditions are taken into account. Traditional Proving Ground (PG) vehicle testing focuses mainly on powertrain durability testing, with only a simple checklist being used by the PG drivers as a reminder to cycle some of the electrical components such as the power window switches, turn signals, etc.
Technical Paper

A Simple Approach to Selecting Automotive Body-in-White Primary-Structural Materials

2002-07-09
2002-01-2050
A simple strategy for building lightweight automobile body-in-whites (BIWs) is developed and discussed herein. Because cost is a critical factor, expensive advanced materials, such as carbon fiber composites and magnesium, must only be used where they will be most effective. Constitutive laws for mass savings under various loading conditions indicate that these materials afford greater opportunity for mass saving when used in bending, buckling or torsion than in tensile, shear or compression. Consequently, it is recommended that these advanced materials be used in BIW components subject to bending and torsion such as rails, sills, “A-B-C” pillars, etc. Furthermore, BIW components primarily subject to tension, compression, or shear, such as floor pans, roofs, shock towers, etc., should be made from lower cost steel. Recommendations for future research that are consistent with this strategy are included.
Technical Paper

Advances in Development of a Fine Water Mist Portable Fire Extinguisher

2009-07-12
2009-01-2510
ADA Technologies, Inc. has designed and built a microgravity-tolerant portable fire extinguisher prototype for use in manned spacecraft and planetary habitats. This device employs Fine Water Mist (FWM) as the fire extinguishing agent, and is refillable from standard stores on long-duration missions. The design uses a single storage tank for minimal mass and volume. The prototype employs a dual-fluid atomizer concept where the pressurant gas (nitrogen) also enhances the water atomization process to generate a droplet size distribution in the optimum diameter range of 10 to 50 micrometers. The expanding discharge gas plume carries the mist to the immediate vicinity of the fire where its extensive surface area promotes high heat transfer rates. A series of 80 fire suppression tests was recently completed to evaluate design options for the hardware and validate performance on three representative fire scenarios.
Technical Paper

An Experimental Study on the Effect of Intake Primary Runner Blockages on Combustion and Emissions in SI Engines under Part-Load Conditions

2004-10-25
2004-01-2973
Charge motion is known to accelerate and stabilize combustion through its influence on turbulence intensity and flame propagation. The present work investigates the effect of charge motion generated by intake runner blockages on combustion characteristics and emissions under part-load conditions in SI engines. Firing experiments have been conducted on a DaimlerChrysler (DC) 2.4L 4-valve I4 engine, with spark range extending around the Maximum Brake Torque (MBT) timing. Three blockages with 20% open area are compared to the fully open baseline case under two operating conditions: 2.41 bar brake mean effective pressure (bmep) at 1600 rpm, and 0.78 bar bmep at 1200 rpm. The blocked areas are shaped to create different levels of swirl, tumble, and cross-tumble. Crank-angle resolved pressures have been acquired, including cylinders 1 and 4, intake runners 1 and 4 upstream and downstream of the blockage, and exhaust runners 1 and 4.
Technical Paper

An Exploration of Failure Modes in Rolled, Ductile, Cast-Iron Crankshafts Using a Resonant Bending Testing Rig

2005-04-11
2005-01-1906
This report explores the relationship of different failure criteria - specifically, surface cracks, stiffness changes, and two-piece failures - on rolled, ductile, cast-iron crankshafts. Crankshaft samples were closely monitored throughout resonant bending fatigue testing and were taken to near complete fracture. By monitoring resonance shifts of the samples during testing, stiffness changes and cracks were monitored. These data showed that an accelerating frequency shift was sufficient to indicate imminent two-piece failure and that this condition can be used as a failure criterion. Fatigue studies on two different crankshafts using this failure criterion were compared to those using a surface crack failure criterion. This comparison showed that using the surface crack failure criterion erroneously decreased the apparent fatigue life of the crankshaft significantly.
Technical Paper

Anti-Shudder Property of Automatic Transmission Fluids - A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2000-06-19
2000-01-1870
In recent years, the slip lock-up mechanism has been adopted widely, because of its fuel efficiency and its ability to improve NVH. This necessitates that the automatic transmission fluid (ATF) used in automatic transmissions with slip lock-up clutches requires anti-shudder performance characteristics. The test methods used to evaluate the anti-shudder performance of an ATF can be classified roughly into two types. One is specified to measure whether a μ-V slope of the ATF is positive or negative, the other is the evaluation of the shudder occurrence in the practical vehicle. The former are μ-V property tests from MERCON® V, ATF+4®, and JASO M349-98, the latter is the vehicle test from DEXRON®-III. Additionally, in the evaluation of the μ-V property, there are two tests using the modified SAE No.2 friction machine and the modified low velocity friction apparatus (LVFA).
Technical Paper

Application of Multi-Parameter and Boundary Mannequin Techniques in Automotive Assembly Process

2003-06-17
2003-01-2198
This paper deals with the multi-parameter and boundary mannequin techniques in creating human models in automotive applications. The concepts and applications of single-parameter, multiple parameter and boundary mannequin method are discussed respectively to clarify certain confusion. Emphasis is put on how to create boundary mannequins for a specific application, which may have been puzzling many engineers in practical applications. The authors would like to share their experience in using the digital human modeling software and make discussions on some common issues. A number of case studies from typical automotive manufacturing assembly operations are also presented to demonstrate the usage of the multi-parameter and boundary mannequin techniques.
Journal Article

Bake Hardening Behavior of DP, TBF, and PHS Steels with Ultimate Tensile Strengths Exceeding 1 GPa

2020-04-14
2020-01-0536
Third generation advanced high strength steels (AHSS) have been developed combining high strength and formability, allowing for lightweighting of vehicle structural components. These AHSS components are exposed to paint baking operations ranging in time and temperature to cure the applied paint. The paint baking treatment, combined with straining induced from part forming, may lead to increased in-service component performance due to a strengthening mechanism known as bake hardening. This study aims to quantify the bake hardening behavior of select AHSS grades. Materials investigated were press hardenable steels (PHS) 1500 and 2000; transformation induced plasticity (TRIP) aided bainitic ferrite (TBF) 1000 and 1200; and dual phase (DP) 1000. The number designations of these grades refer to minimum as-received ultimate tensile strengths in MPa. Paint baking was simulated using industrially relevant times and temperatures from 15 to 60 min and 120 to 200 °C, respectively.
Technical Paper

Balance between Reliability and Robustness in Engine Cooling System Optimal Design

2007-04-16
2007-01-0594
This paper explores the trade-off between reliability-based design and robustness for an automotive under-hood thermal system using the iSIGHT-FD environment. The interaction between the engine cooling system and the heating, ventilating, and air-conditioning (HVAC) system is described. The engine cooling system performance is modeled using Flowmaster and a metamodel is developed in iSIGHT. The actual HVAC system performance is characterized using test bench data. A design of experiment procedure determines the dominant factors and the statistics of the HVAC performance is obtained using Monte Carlo simulation (MCS). The MCS results are used to build an overall system response metamodel in order to reduce the computational effort. A multi-objective optimization in iSIGHT maximizes the system mean performance and simultaneously minimizes its standard deviation subject to probabilistic constraints.
Technical Paper

Bending Fatigue Crack Characterization and Fracture Toughness of Gas Carburized SAE 4320 Steel

1992-02-01
920534
Crack initiation and propagation in an SAE 4320 steel gas carburized to a 1.0 mm case depth was examined in specimens subjected to bending fatigue. Cellulose acetate replicas of incrementally loaded specimens showed that small, intergranular cracks were initiated during static loading to stress levels just above the endurance limit. The intergranular cracks arrest and serve as initiation sites for semi-elliptical, transgranular fatigue crack propagation. The maximum depth of stable crack propagation was between 0.17 and 0.23 mm, a depth which corresponds to the maximum hardness of the carburized case. Three equations which provide approximations to the stress distribution in the fatigue specimens were used to calculate KIC for the carburized case with values of maximum applied stress and measured stable crack geometry.
Technical Paper

Bending Fatigue Performance of Carburized 4320 Steel

1993-03-01
930963
The bending fatigue performance of four heats of carburized, commercially-produced SAE 4320 steel was evaluated. Simulated gear tooth in bending (SGTB) cantilever beam specimens from each heat were identically carburized and fatigue tested in the direct quenched condition after carburizing. The microstructure and fracture surfaces of all specimens were characterized with light and electron microscopy. The four direct quenched sets of specimens performed similarly in low cycle fatigue. Endurance limits among the direct quenched specimens ranged between 1100 and 1170 MPa (160 and 170 ksi) and intergranular cracking dominated fatigue crack initiation. An additional set of specimens from one of the heats was reheated after carburizing. The fatigue performance of the reheated specimens was superior to that of the direct quenched specimens in both the low and high cycle regions. The effects of inclusion content, microstructure, and residual stresses on fatigue performance are discussed.
Technical Paper

Bending Fatigue Performance of Gas- and Plasma-Carburized Steels

1999-03-01
1999-01-0602
This study evaluated the bending fatigue performance of a modified SAE 4320 steel as a function of carburizing technique. S-N curves and endurance limits were established by fatigue testing modified Brugger-type specimens that are designed to simulate a single gear tooth. Fractured specimens were examined by light and electron microscopy to determine crack initiation sites, establish the extent of stable crack propagation, and analyze surface oxide types and distributions. Test results show that plasma-carburizing boosted the endurance limit of an oxidation-susceptible gear steel from 1100 MPa to 1375 MPa. Fatigue endurance limits in excess of 1400 MPa had previously been achieved in gas-carburized SAE 4320 steels by reheat treatments and reductions in high-oxidation potential elements. The level of improvement observed in this study suggests that any of these advanced processing techniques can allow significant size reductions and weight savings in automotive transmission gears.
Journal Article

Carbon and Manganese Effects on Quenching and Partitioning Response of CMnSi-Steels

2015-04-14
2015-01-0530
Quenching and partitioning (Q&P) is a novel heat treatment to produce third generation advanced high-strength steels (AHSS). The influence of carbon on mechanical properties of Q&P treated CMnSi-steels was studied using 0.3C-1.5Mn-1.5Si and 0.4C-1.5Mn-1.5Si alloys. Full austenitization followed by two-step Q&P treatments were conducted using varying partitioning times and a fixed partitioning temperature of 400 °C. The results were compared to literature data for 0.2C-1.6Mn-1.6Si, 0.2-3Mn-1.6Si and 0.3-3Mn-1.6Si Q&P treated steels. The comparison showed that increasing the carbon content from 0.2 to 0.4 wt pct increased the ultimate tensile strength by 140 MPa per 0.1 wt pct C up to 1611 MPa without significantly decreasing ductility for the partitioning conditions used. Increased alloy carbon content did not substantially increase the retained austenite fractions. The best combinations of ultimate tensile strength and total elongation were obtained using short partitioning times.
X