Refine Your Search

Topic

Author

Search Results

Technical Paper

2D Residual Gas Visualization in an Optical Direct Injection Spark Ignition Engine with IR Laser Absorption

2015-04-14
2015-01-1648
The spatial distribution of internal exhaust gas recirculation (EGR) is evaluated in an optically accessible direct injection spark ignition engine using near infrared laser absorption to visualize the distribution of the H2O molecule. The obtained overall internal exhaust gas recirculation compares well to gas-exchange cycle calculations and the spatial distributions are consistent with those measured with inverse LIF. The experimental procedures described in this report are designed to be simple and rapidly implemented without the need to resort to unusual optical components. The necessary spectral data of the selected absorption line is obtained from the HITEMP database and is validated with prior experiments carried out in a reference cell. Laser speckle in the images is effectively reduced using a ballistic diffuser.
Technical Paper

3DCFD-Modeling of a Hydrogen Combustion-Process with Regard to Simulation Stability and Emissions

2023-06-26
2023-01-1209
In the context of the energy transition, CO2-neutral solutions are of enormous importance for all sectors, but especially for the mobility sector. Hydrogen as an energy carrier has therefore been the focus of research and development for some time. However, the development of hydrogen combustion engines is in many respects still in the conception phase. Automotive system providers and engineering companies in the field of software development and simulation are showing great interest in the topic. In a joint project with the industrial partners Robert Bosch GmbH and AVL Germany, combustion in a H2-DI-engine for use in light-duty vehicles was methodically investigated using the CFD tool AVL FIRE®. The collaboration between Robert Bosch GmbH and the Institute for Mobile Systems (IMS) at Otto von Guericke University Magdeburg has produced a model study in which model approaches for the combustion of hydrogen can be analyzed.
Technical Paper

A Non Contact Strain Gage Torque Sensor for Automotive Servo Driven Steering Systems

1994-03-01
940629
Tapping of one or more torques (ranges 10 Nm and 60 Nm) on the steering column for the purpose of servo control must satisfy high accuracy requirements on the one hand and high safety requirements on the other hand. A suggestion for developing a low-cost solution to this problem is described below: Strain gages optimally satisfy both these requirements: However, for cost reasons, these are not applied directly to the steering column but to a prefabricated, flat steel rod which is laser welded to the torque rod of the steering column. The measuring direction of the strain gages is under 45° to the steering column axis. The strain gages are either vacuum metallized onto the support rod as a thin film or laminated in a particularly low-cost way by means of a foil-type intermediate carrier.
Technical Paper

A Novel CFD Approach for an Improved Prediction of Particulate Emissions in GDI Engines by Considering the Spray-Cooling on the Piston

2015-04-14
2015-01-0385
The emission of particulate matter from future GDI engines has to be optimized, to comply with more stringent emission standards such as EU6. Therefore, the mechanisms responsible for the formation of particles have to be analyzed in detail. The understanding of the in-cylinder processes, necessary for this purpose, can only be achieved by a complementary use of optically accessible single-cylinder engines as well as the numerical simulation. This however leads to great demands on the 3D flow simulation. In this paper the complete CFD approach, incorporating a detailed description of the entire underlying model chain is shown. Particularly the wall surface temperature and the temperature drop due to the interaction with liquid fuel spray were identified as important parameters influencing the spray-wall interaction and thus also the particulate emissions. Nevertheless, in conventional CFD models, the spray cooling cannot be captured because of an assumed constant wall temperature.
Technical Paper

A Review of the Requirements for Injection Systems and the Effects of Fuel Quality on Particulate Emissions from GDI Engines

2018-09-10
2018-01-1710
Particulate emissions from Gasoline Direct Injection (GDI) engines have been an important topic of recent research interest due to their known environmental effects. This review paper will characterise the influence of different gasoline direct injection fuel systems on particle number (PN) emissions. The findings will be reviewed for engine and vehicle measurements with appropriate driving cycles (especially real driving cycles) to evaluate effects of the fuel injection systems on PN emissions. Recent technological developments alongside the trends of the influence of system pressure and nozzle design on injector tip wetting and deposits will be considered. Besides the engine and fuel system it is known that fuel composition will have an important effect on GDI engine PN emissions. The evaporation qualities of fuels have a substantial influence on mixture preparation, as does the composition of the fuel itself.
Technical Paper

Analysis of Flow Patterns inside an Autothermal Gasoline Reformer

2001-05-07
2001-01-1917
The present paper concentrates on the option of catalytic autothermal reforming of gasoline for fuel cell applications. Major parameters of this process are the “Steam to Carbon Ratio” S/C and the air to fuel ratio λ. Computations assuming thermodynamic equilibrium in the autothermal reactor outlet (ATR) were carried out to attain information about their proper choice, as failure in adjusting the parameters within narrow limits has severe consequences on the reforming process. In order to quantify velocity distribution just ahead the catalyst and to evaluate mixing uniformity we designed an ATR featuring an optical access: Thus flow visualization using PIV (Particle Image Velocimetry) and LIF (Laser Induced Fluorescence) technique is possible. Preliminary PIV-results are presented and compared with CFD computations (Computational Fluid D ynamics).
Technical Paper

Analysis of the In-Cylinder Flow Field / Spray Injection Interaction within a DISI IC Engine Using High-Speed PIV

2011-04-12
2011-01-1288
This study presents measurements of transient flow field and spray structures inside an optically accessible DISI (direct-injection spark-ignition) internal combustion engine. The flow field has a direct effect upon mixture and combustion processes. Given the need to increase the efficiency and performance of modern IC engines and thus reduce emissions a detailed understanding of the flow field is necessary. The method of choice was high-speed two-component particle image velocimetry (PIV) imaging a large field of view (43 x 44 mm₂). To capture the temporal evolution of the main flow features the repetition rate was set to 6 kHz which resolves one image per 1° crank angle (CA) at 1000 rpm. The crank angle range recorded was the latter half of the compression stroke at various engine speeds as well as various charge motions (neutral, tumble and swirl). Moreover, consecutive cycles were recorded allowing a detailed investigation of cycle-to-cycle variations.
Technical Paper

Analysis of the Injection of Urea-Water-Solution for Automotive SCR DeNOx-Systems: Modeling of Two-Phase Flow and Spray/Wall-Interaction

2006-04-03
2006-01-0643
The selective catalytic reduction (SCR) based on urea-water-solution is an effective technique to reduce nitrogen oxides (NOx) emitted from diesel engines. A 3D numerical computer model of the injection of urea-water-solution and their interaction with the exhaust gas flow and exhaust tubing is developed to evaluate different configurations during the development process of such a DeNOx-system. The model accounts for all relevant processes appearing from the injection point to the entrance of the SCR-catalyst: momentum interaction between gas phase and droplets evaporation and thermolysis of droplets hydrolysis of isocyanic acid in gas phase heat transfer between wall and droplets spray/wall-interaction two-component wall film including interaction with gas phase and exhaust tube The single modeling steps are verified with visualizations, patternator measurements, phase-doppler-anemometer results and temperature measurements.
Technical Paper

CARTRONIC - An Open Architecture for Networking the Control Systems of an Automobile

1998-02-23
980200
The car industry has reached a point where electronic systems, which were so far essentially autonomous, begin to grow together to a Car-Wide Web. The main driving force is the demand for more safety, security, and comfort implemented economically. Already various parties are working on control networks. In the long run, vehicle motion and dynamic systems, safety, security, comfort as well as mobile multimedia systems will integrate and reach out for the vision of accident-free, comfortable, and well-informed driving. As a foundation for a Car-Wide Web, Bosch is developing an open architecture called CARTRONIC. The essence of CARTRONIC is to define structuring rules, modeling rules and patterns for total, integrated control of vehicles. The rules and patterns allow the mapping of high-level functions onto several physical implementations, for instance one logical description of functional connections could be created for cars with different equipment packages.
Technical Paper

Common Rail - An Attractive Fuel Injection System for Passenger Car DI Diesel Engines

1996-02-01
960870
Passenger car DI Diesel engines need a flexible fuel injection system. Bosch develops a common rail system for this purpose. Besides variation of fuel quantity and start of injection, it permits to choosing freely injection pressure inthe rangeof 150 to 1400 barand injecting fuel in several portions. These new means will contribute to further improvements of DI engines concerning noise, exhaust emissions and engine torque.
Technical Paper

Comparison of Shadowgraph Imaging, Laser-Doppler Anemometry and X-Ray Imaging for the Analysis of Near Nozzle Velocities of GDI Fuel Injectors

2017-10-08
2017-01-2302
The fuel spray behavior in the near nozzle region of a gasoline injector is challenging to predict due to existing pressure gradients and turbulences of the internal flow and in-nozzle cavitation. Therefore, statistical parameters for spray characterization through experiments must be considered. The characterization of spray velocity fields in the near-nozzle region is of particular importance as the velocity information is crucial in understanding the hydrodynamic processes which take place further downstream during fuel atomization and mixture formation. This knowledge is needed in order to optimize injector nozzles for future requirements. In this study, the results of three experimental approaches for determination of spray velocity in the near-nozzle region are presented. Two different injector nozzle types were measured through high-speed shadowgraph imaging, Laser Doppler Anemometry (LDA) and X-ray imaging.
Technical Paper

Control Strategy for NOx - Emission Reduction with SCR

2003-11-10
2003-01-3362
Future emission standards for heavy-duty vehicles like Euro 4, Euro 5, US '07 require advanced engine functionality. One contribution to achieve this target is the catalytic reduction of nitrogen oxides by injection of urea water solution to the exhaust gas. An overview on a urea dosing system, also called DENOXTRONIC, is given and a dosing strategy is described.
Technical Paper

Engine Management Systems in Hybrid Technology

1986-03-01
860593
Increasingly stringent requirements regarding exhaust emission, fuel consumption, driveability and comfort have led to an accelerated introduction of electronically controlled systems, the complexity of which can best be handled by microcomputers, these being the basis of all modern electronic control units. These electronic control units are usually installed in the passenger compartment, due to the need for moderate conditions in respect of temperature, vibration, moisture and dust. However because of the increasing variety of systems the available space for the installation of these control boxes has become smaller and smaller whilst the complexity of the wire harness has led to increased costs and electromagnetic interference problems. As a result there is an increasing demand for electronic control units (ECU) which can be installed in the engine compartment.
Technical Paper

Engine-Independent Exhaust Gas Aftertreatment Using a Burner Heated Catalyst

2006-10-16
2006-01-3401
Meeting current exhaust emission standards requires rapid catalyst light-off. Closed-coupled catalysts are commonly used to reduce light-off time by minimizing exhaust heat loss between the engine and catalyst. However, this exhaust gas system design leads to a coupling of catalyst heating and engine operation. An engine-independent exhaust gas aftertreatment can be realized by combining a burner heated catalyst system (BHC) with an underfloor catalyst located far away from the engine. This paper describes some basic characteristics of such a BHC system and the results of fitting this system into a Volkswagen Touareg where a single catalyst was located about 1.8 m downstream of the engine. Nevertheless, it was possible to reach about 50% of the current European emission standard EU 4 without additional fuel consumption caused by the BHC system.
Technical Paper

Ethernet and IP - The Solution to Master Complexity, Safety and Security in Vehicle Communication Networks?

2011-04-12
2011-01-1042
The development of vehicle communication networks is challenged not only by the increasing demand in data exchange and required data rate but also the need to connect the vehicle to external sources for personal connectivity of driver and car to infrastructure applications. Solutions are required to master complexity of in-vehicle communication networks, e.g. diagnostic access, flashing of Electronic Control Units, the data backbone connecting the vehicle domains and the data transfer of cameras. Safety (data transfer) and security (violation) issues of the communication networks gain more importance especially by introducing interfaces to external sources either via mobile devices or by connecting the vehicle to other external sources, e.g. Internet and Car to Infrastructure applications. The Internet Protocol (IP) appears to be an ideal solution to address these challenges, especially in connection with an Ethernet physical layer for fast data transfer.
Technical Paper

Evaluating Different Measures to Improve the Numerical Simulation of the Mixture Formation in a Spark-Ignition CNG-DI-Engine

2017-03-28
2017-01-0567
Compressed Natural Gas (CNG) is a promising alternative fuel for internal combustion engines as its combustion is fuel-efficient and lean in carbon dioxide compared to gasoline. The high octane number of methane gives rise to significant increase of the thermodynamic efficiency due to higher possible compression ratios. In order to use this potential, new stratified mixture formation concepts for CNG are investigated by means of numerical fluid simulations. For decades RANS methods have been the industry standard to model three-dimensional flows. Indeed, there are well-known deficiencies of the widely used eddy viscosity turbulence models based on the applied Boussinesq hypothesis. Reynolds stress turbulence models as well as scale resolving simulation approaches can be appealing alternative choices since they offer higher accuracy. However, due to their large computing effort, they are still mostly impractical for the daily use in industrial product development processes.
Technical Paper

Evaluation of Geometry-Dependent Spray Hole Individual Mass Flow Rates of Multi-Hole High-Pressure GDI-Injectors Utilizing a Novel Measurement Setup

2020-09-15
2020-01-2123
In order to optimize spray layouts of commonly used high-pressure injectors for gasoline direct injection (GDI) engines featuring multi-hole valve seats, a detailed understanding of the cause-effect relation between inner spray hole geometries and inner flow conditions, initializing the process of internal mixture formation, is needed. Therefore, a novel measurement setup, capable of determining spray hole individual mass flow rates, is introduced and discussed. To prove its feasibility, a 2-hole configuration is chosen. The injected fuel quantities are separated mechanically and guided to separate pressure tight measurement chambers. Each measurement chamber allows for time resolved mass flow rate measurements based on the HDA measurement principle (German: “Hydraulisches Druck-Anstiegsverfahren”).
Journal Article

Experimental Investigation of Fuel Impingement and Spray-Cooling on the Piston of a GDI Engine via Instantaneous Surface Temperature Measurements

2014-04-01
2014-01-1447
In order to comply with more and more stringent emission standards, like EU6 which will be mandatory starting in September 2014, GDI engines have to be further optimized particularly in regard of PN emissions. It is generally accepted that the deposition of liquid fuel wall films in the combustion chamber is a significant source of particulate formation in GDI engines. Particularly the wall surface temperature and the temperature drop due to the interaction with liquid fuel spray were identified as important parameters influencing the spray-wall interaction [1]. In order to quantify this temperature drop at combustion chamber surfaces, surface temperature measurements on the piston of a single-cylinder engine were conducted. Therefore, eight fast-response thermocouples were embedded 0.3 μm beneath the piston surface and the signals were transmitted from the moving piston to the data acquisition system via telemetry.
Technical Paper

Experimental and Numerical Investigation of Hydrogen Injection and its Preliminary Impact on High Performance Engines Development

2023-04-11
2023-01-0402
Under the proposed Green Deal program, the European Union will aim to achieve zero net greenhouse gas (GHG) emissions by 2050. The interim target is to reduce GHG by 55% by 2030. In the current debate concerning CO2-neutral powertrains, bio-fuels and e-fuels could play an immediate and practical role in reducing lifecycle engine emissions. Hydrogen however, is one of the few practical fuels that can result in near zero CO2 emissions at the tailpipe, which is the main focus of current legislation. Compared to gasoline, hydrogen presents a higher laminar flame speed, a wider range of flammability and higher auto-ignition temperatures, making it among the most attractive of fuels for future engines. As a challenge, hydrogen requires a very low ignition energy. This may imply an increased susceptibility to Low Speed Pre-Ignition (LSPI), surface ignition and back-fire phenomena. In order to exploit hydrogen’s potential, the injection system plays an extremely important role.
Technical Paper

Fuel Injection Equipment for Heavy Duty Diesel Engines for U. S. 1991/1994 Emission Limits

1989-02-01
890851
The particulate emissions can be reduced by increasing injection pressure. The NOx-emission can be lowered to the required amount with a retarded injection-begin. These measures raise fuel consumption by approximately 8-10 %. To avoid blue smoke from the cold engine, it is advantageous that the fuel injection is advanced during the warm-up period. These statements apply for injection systems with unit injectors as well as for pump-line-nozzle-systems. In this paper, the pump-line-nozzle-system will be described. With this system, injection pressures of 1200 to 1400 bar at the injection nozzle are reached. The injection-begin can be changed with a control-sleeve in-line pump. The injection-begin and fuel quantity can be flexibly and accurately adjusted by means of an electronic governor.
X