Refine Your Search

Topic

Search Results

Technical Paper

A New Approach to Assess the Accuracy of Service Timing Devices for Injection Pumps of Diesel Engines

1999-03-01
1999-01-0823
The correct timing of the diesel injection pump on engine is of major importance for all functions of the engine and for its exhaust emissions, during production pass off as well as in the field. Within the diesel service workshops a variety of devices exist to test the timing of the injection pump on engine. Most of them operate by clamp-on transducer being fitted to the injection pipe. A large uncertainty exists concerning the accuracy of such timing systems. Most diesel engine manufacturers do not have confidence in the timing devices capability and, therefore, do not recommend their usage. A working group within the International Organization for Standardization (ISO) adopted a method for the validation of these measurement systems, which usually is used to judge the capability of measurement gauges for industrial production processes.
Journal Article

A Representative Testing Methodology for System Influence on Automotive Fuel Filtration

2013-04-08
2013-01-0891
Filtration of diesel and gasoline fuel in automotive applications is affected by many external and internal parameters, e.g. vibration, temperature, pressure, flow pulsation, and engine start-stop. Current test procedures for automotive fuel filters, proposed by most of the researchers and organizations including Society for Automotive Engineers (SAE) and International Organization for Standardization (ISO), do not apply the previously mentioned real-world-conditions. These operating conditions, which are typical for an automotive fueling system, have a significant effect on fuel filtration and need to be considered for the accurate assessment of the filter. This requires the development of improved testing procedures that will simulate the operating conditions in a fuel system as encountered in the real world.
Technical Paper

A Small, Light Radar Sensor and Control Unit for Adaptive Cruise Control

1998-02-23
980607
The first generation of radar-sensor-based ACC-Systems will be available in 1998/1999 in Europe. As a first step high end car manufacturers will sell ACC as optional equipment in their top models for a significant add-on price. For this generation good performance was the most important development goal. For the future, however, small, highly integrated systems are needed which easily can be fitted into the body of small cars. High performance and low cost are essential to allow the car manufacturers to sell ACC as standard equipment. A first step in that direction is the “Sensor and Control Unit” developed by Bosch which integrates a FMCW-radar sensor and the ACC-controller in one housing. It is designed for easy manufacturing on existing equipment with standard processes. The design meets the requirements of an early phase with low production figures as well as a phase characterized by increasing numbers and decreasing prices.
Technical Paper

AUTOSAR Gets on the Road - More and More

2012-04-16
2012-01-0014
AUTOSAR (AUTomotive Open System ARchitecture) is a worldwide standard for automotive basic software in line with an architecture that eases exchange and transfer of application software components between platforms or companies. AUTOSAR provides the standardized architecture together with the specifications of the basics software along with the methodology for developing embedded control units for automotive applications. AUTOSAR matured over the last several years through intensive development, implementation and maintenance. Two main releases (R3.2 and R4.0) represent its current degree of maturity. AUTOSAR is driven by so called core partners: leading car manufacturers (BMW, Daimler, Ford, GM, PSA, Toyota, Volkswagen) together with the tier 1 suppliers Continental and Bosch. AUTOSAR in total has more than 150 companies (OEM, Tier X suppliers, SW and tool suppliers, and silicon suppliers) as members from all over the world.
Technical Paper

Active Pedestrian Protection - System Development

2004-03-08
2004-01-1604
Pedestrian protection is an upcoming field for research and development. Active pedestrian protection is described from a system perspective. In this view, the development of an active pedestrian protection system is shown. First an overview on statistics and legal requirements is given and the system requirements are discussed. Sensor concepts and realizations are shown, also different test methods and results are explained. FE-simulations to complete and later replace additional tests are developed, after cross check with the experimental results. In combination with the shown actuator concept this leads to a full functioning active pedestrian protection system.
Journal Article

Advanced Combustion System Analyses on a 125cc Motorcycle Engine

2011-11-08
2011-32-0557
Environmental consciousness and tightening emissions legislation push the market share of electronic fuel injection within a dynamically growing world wide small engines market. Similar to automotive engines during late 1980's, this opens up opportunities for original equipment manufacturers (OEM) and suppliers to jointly advance small engines performance in terms of fuel economy, emissions, and drivability. In this context, advanced combustion system analyses from automotive engine testing have been applied to a typical production motorcycle small engine. The 125cc 4-stroke, 2-valve, air-cooled, single-cylinder engine with closed-loop lambda-controlled electronic port fuel injection was investigated in original series configuration on an engine dynamometer. The test cycle fuel consumption simulation provides reasonable best case fuel economy estimates based on stationary map fuel consumption measurements.
Technical Paper

Analysis of Non-Police Reported Accidents on Indian Highways

2017-01-10
2017-26-0005
The official Indian accident statistics show that the number of road accidents and fatalities are one of the highest worldwide. These official statistics provide important facts about the current accident situation. It is suspected that for various reasons not all accidents are reported to the official statistic. This study estimates the degree of underreporting of traffic accidents with casualties in India. In order to get a national overview of the traffic accident situation it is necessary to improve the knowledge about underreported accidents. Therefore, the in-depth accident database of “Road Accident Sampling System India” (RASSI) was analyzed [1]. This project is organized by a consortium that has collected traffic accidents scientifically in four different regions since 2011 on the spot which have been reported either by police or by local hospitals and own patrol by RASSI engineers.
Technical Paper

Analysis of the In-Cylinder Flow Field / Spray Injection Interaction within a DISI IC Engine Using High-Speed PIV

2011-04-12
2011-01-1288
This study presents measurements of transient flow field and spray structures inside an optically accessible DISI (direct-injection spark-ignition) internal combustion engine. The flow field has a direct effect upon mixture and combustion processes. Given the need to increase the efficiency and performance of modern IC engines and thus reduce emissions a detailed understanding of the flow field is necessary. The method of choice was high-speed two-component particle image velocimetry (PIV) imaging a large field of view (43 x 44 mm₂). To capture the temporal evolution of the main flow features the repetition rate was set to 6 kHz which resolves one image per 1° crank angle (CA) at 1000 rpm. The crank angle range recorded was the latter half of the compression stroke at various engine speeds as well as various charge motions (neutral, tumble and swirl). Moreover, consecutive cycles were recorded allowing a detailed investigation of cycle-to-cycle variations.
Technical Paper

Analyze This! Sound Static Analysis for Integration Verification of Large-Scale Automotive Software

2019-04-02
2019-01-1246
Safety-critical embedded software has to satisfy stringent quality requirements. One such requirement, imposed by all contemporary safety standards, is that no critical run-time errors must occur. Runtime errors can be caused by undefined or unspecified behavior of the programming language; examples are buffer overflows or data races. They may cause erroneous or erratic behavior, induce system failures, and constitute security vulnerabilities. A sound static analyzer reports all such defects in the code, or proves their absence. Sound static program analysis is a verification technique recommended by ISO/FDIS 26262 for software unit verification and for the verification of software integration. In this article we propose an analysis methodology that has been implemented with the static analyzer Astrée. It supports quick turn-around times and gives highly precise whole-program results.
Technical Paper

Application Possibilities and Future Chances of “Smart” Sensors in the Motor Vehicle

1989-02-01
890304
Current vehicle concepts necessitate the multiple measurement of several variables required by separate electronic systems in the motor vehicle. There is the need to make sensors bus capable by the incorporation of electronic components in new definition concepts, in other words to make them multiply usable. Such bus concepts are at the present time taking concrete shape. The step of introducing electronics - especially digital - to the measuring point may simultaneously be used to considerably improve utilization of the information content of sensor structures using means of indivdual, digital correction to a greater level than has until now been technically possible. There remains the demand for high stability and reproducibility of the sensor properties over time. These signal preprocessing and information condensation processes on the spot also satisfy the need to relieve the central control units.
Technical Paper

Automated Model-Based GDI Engine Calibration Adaptive Online DoE Approach

2002-03-04
2002-01-0708
Due to its high number of free parameters, the new generation of gasoline engines with direct injection require an efficient calibration process to handle the system complexity and to avoid a dramatic increase in calibration costs. This paper presents a concept of specific toolboxes within a standardized and automated calibration environment, supporting the complexity of GDI engines and establishing standard procedures for distributed development. The basic idea is the combination of a new and more efficient online DoE approach with the automatic and adaptive identification of the region of interest in the high dimensional parameter space. This guarantees efficient experimental designs even for highly non-linear systems with often irregularly shaped valid regions. As the main advantage for the calibration engineer, the new approach requires almost no pre-investigations and no specific statistical knowledge.
Technical Paper

CARTRONIC® Based Safety Analysis: Introducing Safety Aspects In Early Development Phases

2002-03-04
2002-01-0269
This article gives an overview of the CARTRONIC® based safety analysis (CSA) including an approach for the automatic determination of failure dependencies in automotive systems. CSA is a safety analysis in an early stage of product development. The goals are to identify safety critical components as soon as practicable in the product development process and to automate the analysis as far as possible. This implies that the system view is abstract, i.e. independent of a certain realization just regarding system functionality. In the CSA so called global failure effects will be systematically identified and assessed regarding severity of potential injuries. Global failure effects are especially important because they reveal failures within the system to the outside world (see also definition 3.1). Additionally the CSA keeps track of failure dependencies and supports the integration of safety measures in the system structure.
Technical Paper

Comparison of Shadowgraph Imaging, Laser-Doppler Anemometry and X-Ray Imaging for the Analysis of Near Nozzle Velocities of GDI Fuel Injectors

2017-10-08
2017-01-2302
The fuel spray behavior in the near nozzle region of a gasoline injector is challenging to predict due to existing pressure gradients and turbulences of the internal flow and in-nozzle cavitation. Therefore, statistical parameters for spray characterization through experiments must be considered. The characterization of spray velocity fields in the near-nozzle region is of particular importance as the velocity information is crucial in understanding the hydrodynamic processes which take place further downstream during fuel atomization and mixture formation. This knowledge is needed in order to optimize injector nozzles for future requirements. In this study, the results of three experimental approaches for determination of spray velocity in the near-nozzle region are presented. Two different injector nozzle types were measured through high-speed shadowgraph imaging, Laser Doppler Anemometry (LDA) and X-ray imaging.
Journal Article

Concept Design of a Parking Brake Module for Standstill Management and Wheel Individual Brake Torque Generation for EVs with Unconventional Service Brake Topology

2022-09-19
2022-01-1186
For electric vehicles the ability for regenerative braking reduces the use of friction brakes. Particularly on the rear axle of vehicles with reduced dynamic requirements such as urban vehicles, this can offer a potential for downsizing or, in extreme cases, even the elimination of the friction brakes on the rear axle. Due to the fact that the rear axle service brakes also represent the typical parking brake location in SoA (State-of-Art) vehicles, a rigorous rethinking of the parking brake concept is necessary to incorporate safe vehicle standstill management for such novel brake system topology. This research study introduces a novel parking brake design that covers SoA but also legal requirements while retaining potentials associated with the elimination of the rear service brakes such as cost and packaging.
Technical Paper

Electronic Data Processing Center for Engine Dynamometers

1966-02-01
660751
The dynamometer evaluation of internal combustion engines has involved a great deal of tedious interpretation and presentation of results. In the past, engine test cells have not been fully utilized, and skilled test engineers have been occupied with routine work, time which could better be spent in actual development work. This paper describes steps taken by Robert Bosch GmbH in its new engine test laboratory, to streamline procedures for observation, computation, plotting, and presentation of results. Measurements from the engine test cell are delivered electrically to a central data processing center. These data are recorded, computed electronically, and plotted on an electric plotting machine functioning from punched paper tape.
Technical Paper

Evaluating Different Measures to Improve the Numerical Simulation of the Mixture Formation in a Spark-Ignition CNG-DI-Engine

2017-03-28
2017-01-0567
Compressed Natural Gas (CNG) is a promising alternative fuel for internal combustion engines as its combustion is fuel-efficient and lean in carbon dioxide compared to gasoline. The high octane number of methane gives rise to significant increase of the thermodynamic efficiency due to higher possible compression ratios. In order to use this potential, new stratified mixture formation concepts for CNG are investigated by means of numerical fluid simulations. For decades RANS methods have been the industry standard to model three-dimensional flows. Indeed, there are well-known deficiencies of the widely used eddy viscosity turbulence models based on the applied Boussinesq hypothesis. Reynolds stress turbulence models as well as scale resolving simulation approaches can be appealing alternative choices since they offer higher accuracy. However, due to their large computing effort, they are still mostly impractical for the daily use in industrial product development processes.
Technical Paper

Generic Methodology for Vibration and Wear Analysis to Understand Their Influences in an Electric Drivetrain

2020-09-30
2020-01-1506
The prime factor which influences noise and vibrations of electro-mechanical drives is wear at the components. This paper discusses the numerical methods developed for abrasion, vibration calculations and the coupling between wear and Noise Vibration and Harshness (NVH) models of the drive unit. The vibration domain model, initially, focuses on the calculations of mechanical excitations at the gear shafts which are generated via a nonlinear dynamic model. Furthermore, the bearings are studied for the influences on their stiffness and eventually their impact on the harmonics of the drivetrain. Later, free and forced vibrations of the complete drivetrain are simulated via a steady-state dynamic model. Consequently, the paper concentrates on the abrasion calculations at the gears. Wear is a complex process and understanding it is essential for determining the vibro-acoustics characteristics.
Technical Paper

Hitch System Comparison — Mechanical, Hydraulic, Electronic

1984-09-01
841130
Modern agricultural tractors are equipped with a hitch control system. These may be mechanical-hydraulic, hydraulic-hydraulic, or electronic-hydraulic. With the variety of design options open to the tractor manufacturer, it is important to select the system which best fits the manufacturer and end user. This paper presents a comprehensive comparison of each system. Robert Bosch has had many years experience in the design and manufacture of components for hitch systems, and hopes to help designers choose the approach best suited for them.
Technical Paper

Holistic Approach for Improved Safety Including a Proposal of New Virtual Test Conditions of Small Electric Vehicles

2015-04-14
2015-01-0571
In the next 20 years the share of small electric vehicles (SEVs) will increase especially in urban areas. SEVs show distinctive design differences compared to traditional vehicles. Thus the consequences of impacts of SEVs with vulnerable road users (VRUs) and other vehicles will be different from traditional collisions. No assessment concerning vehicle safety is defined for vehicles within European L7e category currently. Focus of the elaborated methodology is to define appropriate test scenarios for this vehicle category to be used within a virtual tool chain. A virtual tool chain has to be defined for the realization of a guideline of virtual certification. The derivation and development of new test conditions for SEVs are described and are the main focus of this work. As key methodology a prospective methodical analysis under consideration of future aspects like pre-crash safety systems is applied.
Technical Paper

Integrated Barometric Pressure Sensor with SMD Packaging: Example of Standardized Sensor Packaging

1996-02-01
960756
A single-chip integrated barometric pressure sensor using bulk silicon micromachining will be presented in this paper. The sensor chip incorporates the complete signal evaluation and trimming of the temperature coefficients and manufacturing tolerances. Sensor chips are mounted onto 6″ × 4″ thick film substrates for batch processing during assembly and trimming. The separated, individual devices can be used for surface mounting (SMD) on a printed circuit board (PCB). Specifications for the sensor functions, as well as the assembly and packaging concept, will be discussed. Assembly, trimming and packaging are the most expensive production steps in the manufacture of sensors. In order to reduce the costs for sensors, we are introducing a standardization of sensor assembly and trimming with batch processing capability: after dicing, the integrated sensor chip is attached to a 6″ × 4″ thick film ceramic substrate with standard die-attaching glue.
X