Refine Your Search

Topic

Author

Search Results

Technical Paper

A New Approach for Characterization of Fuel Property Influence on Spray Formation in Diesel Engines

2010-10-25
2010-01-2249
Environmental and economical reasons have led to an increased interest in the usage of alternative fuels for combustion engines. To clarify the influence of these so-called future fuels on engine performance and emissions it is mandatory to understand their effect on spray formation. Usually this is done by performing various spray experiments with potential future fuels which are available for research purposes today. Due to the multitude of possible future fuels and therefore the uncertainty of their properties and their influence on spray formation a more general approach was chosen in the present study. The possible range of physical properties of future fuels for diesel engines was identified and more than twenty different fluids with representative properties, mostly one-component chemicals, were chosen by means of design of experiment (DoE).
Technical Paper

A New Approach to Assess the Accuracy of Service Timing Devices for Injection Pumps of Diesel Engines

1999-03-01
1999-01-0823
The correct timing of the diesel injection pump on engine is of major importance for all functions of the engine and for its exhaust emissions, during production pass off as well as in the field. Within the diesel service workshops a variety of devices exist to test the timing of the injection pump on engine. Most of them operate by clamp-on transducer being fitted to the injection pipe. A large uncertainty exists concerning the accuracy of such timing systems. Most diesel engine manufacturers do not have confidence in the timing devices capability and, therefore, do not recommend their usage. A working group within the International Organization for Standardization (ISO) adopted a method for the validation of these measurement systems, which usually is used to judge the capability of measurement gauges for industrial production processes.
Technical Paper

A New Datadriven Approach to Modeling the Combustion of a Diesel Engine in HCCI Mode

2009-04-20
2009-01-0128
The contribution presents a new data driven modeling approach for diesel HCCI combustion. Input parameters of the combustion model are external actuating variables as for example the start of injection. The model incorporates experimental data of the engine in HCCI mode, in the standard diesel mode and in the transition region between both modes. New disclosed dependencies between characteristic values of the cylinder pressure and the fuel burn rate are used to linearize the combustion model for a given operating point. In this paper the validation of the combustion model is discussed based on dynamic measuring data of the urban part of the NEDC. Finally, the combustion model is integrated in a zero-dimensional diesel engine model.
Journal Article

A Representative Testing Methodology for System Influence on Automotive Fuel Filtration

2013-04-08
2013-01-0891
Filtration of diesel and gasoline fuel in automotive applications is affected by many external and internal parameters, e.g. vibration, temperature, pressure, flow pulsation, and engine start-stop. Current test procedures for automotive fuel filters, proposed by most of the researchers and organizations including Society for Automotive Engineers (SAE) and International Organization for Standardization (ISO), do not apply the previously mentioned real-world-conditions. These operating conditions, which are typical for an automotive fueling system, have a significant effect on fuel filtration and need to be considered for the accurate assessment of the filter. This requires the development of improved testing procedures that will simulate the operating conditions in a fuel system as encountered in the real world.
Technical Paper

A Thermodynamic Study on Boosted HCCI: Experimental Results

2011-04-12
2011-01-0905
Stricter emissions legislation and growing demands for lower fuel consumption require significant efforts to improve combustion efficiency while satisfying the emission quality demands. Controlled Homogeneous Charge Compression Ignition (HCCI) combined with boosted air systems on gasoline engines provides a particularly promising, yet challenging, approach. Naturally aspirated (NA) HCCI has already shown considerable potential in combustion efficiency gains. Nevertheless, since the volumetric efficiency is limited in the NA HCCI operation range due to the hot residuals required to ignite the mixture and slow down reaction kinetics, only part-load operation is feasible in this combustion mode. Considering the future gasoline engine market with growing potentials identified in downsized gasoline engines, it becomes necessary to investigate the synergies and challenges of controlled, boosted HCCI.
Journal Article

A Thermodynamic Study on Boosted HCCI: Motivation, Analysis and Potential

2010-04-12
2010-01-1082
Due to the increasingly stricter emission legislation and growing demands for lower fuel consumption, there have been significant efforts to improve combustion efficiency while satisfying the emission requirements. Homogeneous Charge Compression Ignition (HCCI) combined with turbo/supercharging on gasoline engines provides a particularly promising and, at the same time, a challenging approach. Naturally aspirated (n.a.) HCCI has already shown a considerable potential of about 14% in the New European Driving Cycle (NEDC) compared with a conventional 4-cylinder 2.0 liter gasoline Port Fuel Injection (PFI) engine without any advanced valve-train technology. The HCCI n.a. operation range is air breathing limited due to the hot residuals required for the self-ignition and to slow down reaction kinetics, and therefore is limited to a part-load operation area.
Journal Article

Advanced Combustion System Analyses on a 125cc Motorcycle Engine

2011-11-08
2011-32-0557
Environmental consciousness and tightening emissions legislation push the market share of electronic fuel injection within a dynamically growing world wide small engines market. Similar to automotive engines during late 1980's, this opens up opportunities for original equipment manufacturers (OEM) and suppliers to jointly advance small engines performance in terms of fuel economy, emissions, and drivability. In this context, advanced combustion system analyses from automotive engine testing have been applied to a typical production motorcycle small engine. The 125cc 4-stroke, 2-valve, air-cooled, single-cylinder engine with closed-loop lambda-controlled electronic port fuel injection was investigated in original series configuration on an engine dynamometer. The test cycle fuel consumption simulation provides reasonable best case fuel economy estimates based on stationary map fuel consumption measurements.
Technical Paper

Advanced Emission and Fuel Economy Concept Using Combined Injection of Gasoline and Hydrogen in SI-Engines

2004-03-08
2004-01-1270
In order to meet future requirements for emission reduction and fuel economy a variety of concepts are available for gasoline engines. In the recent past new pathways have been found using alternative fuels and fuel combinations to establish cost optimized solutions. The presented concept for a SI-engine consists of combined injection of gasoline and hydrogen. A hydrogen enriched gas mixture is being injected additionally to gasoline into the engine manifold. The gas composition represents the output of an onboard gasoline reformer. The simulations and measurements show substantial benefits to improve the combustion process resulting in reduced cold start and warm up emissions and optimized part load operation. The replacement of gasoline by hydrogen-rich gas during engine start leads to zero hydrocarbons in the exhaust gas.
Technical Paper

Advances in Design and Implementation of OBD Functions for Diesel Injection Based on a Qualitative Approach to Diagnosis

2000-03-06
2000-01-0365
This paper reports on the application of model-based diagnosis techniques to diesel engine management systems within the Brite-EuRam project “Vehicle Model Based Diagnosis”. We discuss some major requirements that have been identified in this application. In particular, it is essential to solve the inherent variant problem, to reason across different physical domains and to fulfill real-time needs for on-board diagnosis. The main foundation of our approach is to use qualitative models, especially qualitative deviation models, which serve as a coherent modeling paradigm for the different domains. In the project, this technology has been implemented and evaluated for on-board diagnosis on two demonstrator vehicles. The paper also discusses further perspectives of the technology for tools supporting the development and implementation of on-board diagnosis.
Journal Article

Alternative Engine Speed Sensing Using the Electric Signals of the Alternator

2016-11-08
2016-32-0088
In the low-cost segment for 2-Wheelers legislative, economic and ecologic considerations necessitate a reduction of the emissions and further improvement in fuel consumption. To reach these targets, the commonly used carburetors are being replaced by engine management systems (EMS). One option to provide these systems for acceptable and attractive system costs is to save a sensor device and to substitute its measure by an estimation value. In many motorcycles the rotor of the vehicle's alternator is rigidly attached to the crankshaft. Therefore, the voltage and current signals of the alternator contain information about the engine's speed, which can be retrieved by evaluating these electric signals. After further processing of this information inside the electronic control unit (ECU), the absolute crankshaft position can be obtained. A high-resolution speed signal without mechanical distortions like tooth errors is gained, whose signal quality equals the one of a common speed sensor.
Technical Paper

Analysis of Flow Patterns inside an Autothermal Gasoline Reformer

2001-05-07
2001-01-1917
The present paper concentrates on the option of catalytic autothermal reforming of gasoline for fuel cell applications. Major parameters of this process are the “Steam to Carbon Ratio” S/C and the air to fuel ratio λ. Computations assuming thermodynamic equilibrium in the autothermal reactor outlet (ATR) were carried out to attain information about their proper choice, as failure in adjusting the parameters within narrow limits has severe consequences on the reforming process. In order to quantify velocity distribution just ahead the catalyst and to evaluate mixing uniformity we designed an ATR featuring an optical access: Thus flow visualization using PIV (Particle Image Velocimetry) and LIF (Laser Induced Fluorescence) technique is possible. Preliminary PIV-results are presented and compared with CFD computations (Computational Fluid D ynamics).
Technical Paper

Analysis of the Combustion Mode Switch Between SI and Gasoline HCCI

2012-04-16
2012-01-1105
The worldwide stricter emission legislation and growing demands for lower fuel consumption require for significant efforts to improve combustion efficiency while satisfying the emission quality demands. Homogeneous Charge Compression Ignition (HCCI) on gasoline engines provides a particularly promising and, at the same time, challenging approach, especially regarding the combustion mode switch between spark-ignited (SI) and gasoline HCCI mode and vice-versa. Naturally aspirated (n.a.) HCCI shows considerable potential, but the operation range is air breathing limited due to hot residuals required for auto-ignition and to slow down reaction kinetics. Therefore it is limited to part-load operation. Considering the future gasoline engine market with growing potentials identified on downsized gasoline engines, it is imperative to investigate the synergies and challenges of boosted HCCI.
Technical Paper

Analysis of the Injection of Urea-Water-Solution for Automotive SCR DeNOx-Systems: Modeling of Two-Phase Flow and Spray/Wall-Interaction

2006-04-03
2006-01-0643
The selective catalytic reduction (SCR) based on urea-water-solution is an effective technique to reduce nitrogen oxides (NOx) emitted from diesel engines. A 3D numerical computer model of the injection of urea-water-solution and their interaction with the exhaust gas flow and exhaust tubing is developed to evaluate different configurations during the development process of such a DeNOx-system. The model accounts for all relevant processes appearing from the injection point to the entrance of the SCR-catalyst: momentum interaction between gas phase and droplets evaporation and thermolysis of droplets hydrolysis of isocyanic acid in gas phase heat transfer between wall and droplets spray/wall-interaction two-component wall film including interaction with gas phase and exhaust tube The single modeling steps are verified with visualizations, patternator measurements, phase-doppler-anemometer results and temperature measurements.
Technical Paper

Automated Model-Based GDI Engine Calibration Adaptive Online DoE Approach

2002-03-04
2002-01-0708
Due to its high number of free parameters, the new generation of gasoline engines with direct injection require an efficient calibration process to handle the system complexity and to avoid a dramatic increase in calibration costs. This paper presents a concept of specific toolboxes within a standardized and automated calibration environment, supporting the complexity of GDI engines and establishing standard procedures for distributed development. The basic idea is the combination of a new and more efficient online DoE approach with the automatic and adaptive identification of the region of interest in the high dimensional parameter space. This guarantees efficient experimental designs even for highly non-linear systems with often irregularly shaped valid regions. As the main advantage for the calibration engineer, the new approach requires almost no pre-investigations and no specific statistical knowledge.
Technical Paper

Challenge Determining a Combustion System Concept for Downsized SI-engines - Comparison and Evaluation of Several Options for a Boosted 2-cylinder SI-engine

2013-04-08
2013-01-1730
To meet future CO₂ emissions limits and satisfy the bounds set by exhaust gas legislation reducing the engine displacement while maintaining the power output ("Downsizing") becomes of more and more importance in the SI engine development process. The total number of cylinders per engine has to be reduced to keep the thermodynamic disadvantages of a small combustion chamber layout as small as possible. Doing so new challenges arise concerning the mechanical design, the design of the combustion system concept as well as strategies maintaining a satisfying transient torque behavior. To address these challenges a turbocharged 2-cylinder SI engine was designed for research purposes by Weber Motor GmbH and Robert Bosch GmbH. The design process was described in detail in last year's paper SAE 2012-01-0832. Since the engine design is very modular it allows for several different engine layouts which can be examined and evaluated.
Technical Paper

Common Rail - An Attractive Fuel Injection System for Passenger Car DI Diesel Engines

1996-02-01
960870
Passenger car DI Diesel engines need a flexible fuel injection system. Bosch develops a common rail system for this purpose. Besides variation of fuel quantity and start of injection, it permits to choosing freely injection pressure inthe rangeof 150 to 1400 barand injecting fuel in several portions. These new means will contribute to further improvements of DI engines concerning noise, exhaust emissions and engine torque.
Technical Paper

Comparison of Shadowgraph Imaging, Laser-Doppler Anemometry and X-Ray Imaging for the Analysis of Near Nozzle Velocities of GDI Fuel Injectors

2017-10-08
2017-01-2302
The fuel spray behavior in the near nozzle region of a gasoline injector is challenging to predict due to existing pressure gradients and turbulences of the internal flow and in-nozzle cavitation. Therefore, statistical parameters for spray characterization through experiments must be considered. The characterization of spray velocity fields in the near-nozzle region is of particular importance as the velocity information is crucial in understanding the hydrodynamic processes which take place further downstream during fuel atomization and mixture formation. This knowledge is needed in order to optimize injector nozzles for future requirements. In this study, the results of three experimental approaches for determination of spray velocity in the near-nozzle region are presented. Two different injector nozzle types were measured through high-speed shadowgraph imaging, Laser Doppler Anemometry (LDA) and X-ray imaging.
Journal Article

Data Based Cylinder Pressure Modeling for Direct-injection Diesel Engines

2009-04-20
2009-01-0679
In this article a new zero-dimensional model is presented for simulating the cylinder pressure in direct injection diesel engines. The model enables the representation of current combustion processes considering multiple injections, high exhaust gas recirculation rates, and turbocharging. In these methods solely cycle-resolved, scalar input variables from the electronic control unit in combination with empirical parameters are required for modeling. The latter are adapted automatically to different engines or modified applications using measured cylinder pressure traces. The verification based on measurements within the entire operating range from engines of different size and type proves the universal applicability and high accuracy of the proposed method.
Technical Paper

Demonstration of Low Criteria Pollutant and Greenhouse Gas Emissions: Synergizing Vehicle Emission Reduction Technology and Lower Carbon Fuels

2024-04-09
2024-01-2121
This study focuses on evaluation of various fuels within a conventional gasoline internal combustion engine (ICE) vehicle and the implementation of advanced emissions reduction technology. It shows the robustness of the implemented technology packages for achieving ultra-low tailpipe emissions to different market fuels and demonstrates the potential of future GHG neutral powertrains enabled by drop-in lower carbon fuels (LCF). An ultra-low emission (ULE) sedan vehicle was set up using state-of-the-art engine technology, with advanced vehicle control and exhaust gas aftertreatment system including a prototype rapid catalyst heating (RCH) unit. Currently regulated criteria pollutant emission species were measured at both engine-out and tailpipe locations. Vehicle was run on three different drive cycles at the chassis dynamometer: two standard cycles (WLTC and TfL) at 20°C, and a real driving emission (RDE) cycle at -7°C.
X