Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

An Investigation of Particulate Morphology, Microstructures, and Fractal Geometry for ael Diesel Engine-Simulating Combustor

2004-10-25
2004-01-3044
The particulate matter (PM) produced from a diesel engine-simulating combustor was characterized in its morphology, microstructure, and fractal geometry by using a unique thermophoretic sampling and Transmission Electron Microscopy (TEM) system. These results revealed that diesel PM produced from the laboratory-scale burner showed similar morphological characteristics to the particulates produced from diesel engines. The flame air/fuel ratio and the particulate temperature history have significant influences on both particle size and fractal geometry. The primary particle sizes were measured to be 14.7 nm and 14.8 nm under stoichiometric and fuel-rich flame conditions, respectively. These primary particle sizes are smaller than those produced from diesel engines. The radii of gyration for the aggregate particles were 83.8 nm and 47.5 nm under these two flame conditions.
Technical Paper

Investigation of Nano-particulate Production From Low Temperature Combustion

2005-04-11
2005-01-0128
This paper describes the initial experiments and computational simulations aimed to measure and quantify the level of nano-sized particulate production from combustion in low temperature combustion (LTC). This work measures nano-sized particles in a laminar ethylene flame both by the use of small-angle x-ray scattering at the Advanced Photon Source and through a technique called thermophoretic sampling. Future experiments will perform similar measurements in a Rapid Compression Machine under conditions typical for HCCI engines. The simulation work involves the use of coupled Computational Fluid Dynamics (CFD) and Chemistry Kinetics codes to predict the fuel/air mixture composition and temperature distribution in the combustion region and directly complements the experimental work. The results show that nano-particles are created under rich, premixed conditions, even with low temperature reactions (T<2000K).
X