Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

2D Residual Gas Visualization in an Optical Direct Injection Spark Ignition Engine with IR Laser Absorption

2015-04-14
2015-01-1648
The spatial distribution of internal exhaust gas recirculation (EGR) is evaluated in an optically accessible direct injection spark ignition engine using near infrared laser absorption to visualize the distribution of the H2O molecule. The obtained overall internal exhaust gas recirculation compares well to gas-exchange cycle calculations and the spatial distributions are consistent with those measured with inverse LIF. The experimental procedures described in this report are designed to be simple and rapidly implemented without the need to resort to unusual optical components. The necessary spectral data of the selected absorption line is obtained from the HITEMP database and is validated with prior experiments carried out in a reference cell. Laser speckle in the images is effectively reduced using a ballistic diffuser.
Technical Paper

3DCFD-Modeling of a Hydrogen Combustion-Process with Regard to Simulation Stability and Emissions

2023-06-26
2023-01-1209
In the context of the energy transition, CO2-neutral solutions are of enormous importance for all sectors, but especially for the mobility sector. Hydrogen as an energy carrier has therefore been the focus of research and development for some time. However, the development of hydrogen combustion engines is in many respects still in the conception phase. Automotive system providers and engineering companies in the field of software development and simulation are showing great interest in the topic. In a joint project with the industrial partners Robert Bosch GmbH and AVL Germany, combustion in a H2-DI-engine for use in light-duty vehicles was methodically investigated using the CFD tool AVL FIRE®. The collaboration between Robert Bosch GmbH and the Institute for Mobile Systems (IMS) at Otto von Guericke University Magdeburg has produced a model study in which model approaches for the combustion of hydrogen can be analyzed.
Technical Paper

A Brush-Model Based Semi-Empirical Tire-Model for Combined Slips

2004-03-08
2004-01-1064
This paper presents a new method to derive the tire forces for simultaneous braking and cornering, by combining empirical models for pure braking and cornering using brush-model tire mechanics. The method is aimed at simulation of vehicle handling, and is of intermediate complexity such that it may be implemented and calibrated by the end user. The brush model states that the contact patch between the tire and the road is divided into an adhesion region where the rubber is gripping the road and a sliding region where the rubber slides on the road surface. The total force generated by the tire is then composed of components from these two regions. In the proposed method the adhesion and the sliding forces are extracted from an empirical pure-slip tire model and then scaled to account for the combined-slip condition. The combined-slip self-aligning torque is described likewise.
Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Technical Paper

A High-Fidelity Study of High-Pressure Diesel Injection

2015-09-01
2015-01-1853
A study of n-dodecane atomization, following the prescribed unseating of the needle tip, is presented for a high-pressure, non-cavitating Bosch Diesel injector (“Spray A”, in the Engine Combustion Network denomination). In the two simulations discussed here, the internal and external multiphase flows are seamlessly calculated across the injection orifice using an interface-capturing approach (for the liquid fuel surface) together with an embedded boundary formulation (for the injector's walls). This setting makes it possible to directly relate the liquid jet spray characteristics (under the assumption of sub-critical flow and with a grid resolution of 3 µm, or 1/30 of the orifice diameter) to the moving internal geometry of the injector. Another novelty is the capability of modeling the compressibility of the liquid and the gas phase while maintaining a sharp interface between the two.
Technical Paper

A Multi-Zone Model for Prediction of HCCI Combustion and Emissions

2000-03-06
2000-01-0327
Homogeneous Charge Compression Ignition (HCCI) combustion is a process dominated by chemical kinetics of the fuel-air mixture. The hottest part of the mixture ignites first, and compresses the rest of the charge, which then ignites after a short time lag. Crevices and boundary layers generally remain too cold to react, and result in substantial hydrocarbon and carbon monoxide emissions. Turbulence has little effect on HCCI combustion, and may be most important as a factor in determining temperature gradients and boundary layer thickness inside the cylinder. The importance of thermal gradients inside the cylinder makes it necessary to use an integrated fluid mechanics-chemical kinetics code for accurate predictions of HCCI combustion. However, the use of a fluid mechanics code with detailed chemical kinetics is too computationally intensive for today's computers.
Technical Paper

A Non Contact Strain Gage Torque Sensor for Automotive Servo Driven Steering Systems

1994-03-01
940629
Tapping of one or more torques (ranges 10 Nm and 60 Nm) on the steering column for the purpose of servo control must satisfy high accuracy requirements on the one hand and high safety requirements on the other hand. A suggestion for developing a low-cost solution to this problem is described below: Strain gages optimally satisfy both these requirements: However, for cost reasons, these are not applied directly to the steering column but to a prefabricated, flat steel rod which is laser welded to the torque rod of the steering column. The measuring direction of the strain gages is under 45° to the steering column axis. The strain gages are either vacuum metallized onto the support rod as a thin film or laminated in a particularly low-cost way by means of a foil-type intermediate carrier.
Technical Paper

A Novel CFD Approach for an Improved Prediction of Particulate Emissions in GDI Engines by Considering the Spray-Cooling on the Piston

2015-04-14
2015-01-0385
The emission of particulate matter from future GDI engines has to be optimized, to comply with more stringent emission standards such as EU6. Therefore, the mechanisms responsible for the formation of particles have to be analyzed in detail. The understanding of the in-cylinder processes, necessary for this purpose, can only be achieved by a complementary use of optically accessible single-cylinder engines as well as the numerical simulation. This however leads to great demands on the 3D flow simulation. In this paper the complete CFD approach, incorporating a detailed description of the entire underlying model chain is shown. Particularly the wall surface temperature and the temperature drop due to the interaction with liquid fuel spray were identified as important parameters influencing the spray-wall interaction and thus also the particulate emissions. Nevertheless, in conventional CFD models, the spray cooling cannot be captured because of an assumed constant wall temperature.
Technical Paper

A Novel Model for Computing the Trapping Efficiency and Residual Gas Fraction Validated with an Innovative Technique for Measuring the Trapping Efficiency

2008-09-09
2008-32-0003
The paper describes a novel method for calculating the residual gas fraction and the trapping efficiency in a 2 stroke engine. Assuming one dimensional compressible flow through the inlet and exhaust ports, the method estimates the instantaneous mass flowing in and out from the combustion chamber; later the residual gas fraction and trapping efficiency are estimated combining together the perfect displacement and perfect mixing scavenging models. It is assumed that when the intake port opens, the fresh mixture is pushing out the burned charge without any mixing and after a multiple of the time needed for the largest eddy to perform one rotation, the two gasses are instantly mixed up together and expelled. The result is a very simple algorithm that does not require much computational time and is able to estimate with high level of precision the trapping efficiency and the residual gas fraction in 2 stroke engines.
Technical Paper

A Numerical Study of a Free Piston IC Engine Operating on Homogeneous Charge Compression Ignition Combustion

1999-03-01
1999-01-0619
A free piston, internal combustion (IC) engine, operating at high compression ratio (∼30:1) and low equivalence ratio (ϕ∼0.35), and utilizing homogeneous charge compression ignition combustion, has been proposed by Sandia National Laboratories as a means of significantly improving the IC engine's cycle thermal efficiency and exhaust emissions. A zero-dimensional, thermodynamic model with detailed chemical kinetics, and empirical scavenging, heat transfer, and friction component models has been used to analyze the steady-state operating characteristics of this engine. The cycle simulations using hydrogen as the fuel, have indicated the critical factors affecting the engine's performance, and suggest the limits of improvement possible relative to conventional IC engine technologies.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Technical Paper

A Rapid Catalyst Heating System for Gasoline-Fueled Engines

2024-04-09
2024-01-2378
Increasingly stringent tailpipe emissions regulations have prompted renewed interest in catalyst heating technology – where an integrated device supplies supplemental heat to accelerate catalyst ‘light-off’. Bosch and Boysen, following a collaborative multi-year effort, have developed a Rapid Catalyst Heating System (RCH) for gasoline-fueled applications. The RCH system provides upwards of 25 kW of thermal power, greatly enhancing catalyst performance and robustness. Additional benefits include reduction of precious metal loading (versus a ‘PGM-only’ approach) and avoidance of near-engine catalyst placement (limiting the need for enrichment strategies). The following paper provides a technical overview of the Bosch/Boysen (BOB) Rapid Catalyst Heating system – including a detailed review of the system’s architecture, key performance characteristics, and the associated impact on vehicle-level emissions.
Technical Paper

A Real Time NOx Model for Conventional and Partially Premixed Diesel Combustion

2006-04-03
2006-01-0195
In this paper a fast NOx model is presented which can be used for engine optimization, aftertreatment control or virtual mapping. A cylinder pressure trace is required as input data. High calculation speed is obtained by using table interpolation to calculate equilibrium temperatures and species concentrations. Test data from a single-cylinder engine and from a complete six-cylinder engine have been used for calibration and validation of the model. The model produces results of good agreement with emission measurements using approximately 50 combustion product zones and a calculation time of one second per engine cycle. Different compression ratios, EGR rates, injection timing, inlet pressures etc. were used in the validation tests.
Journal Article

A Review of Current Understanding of the Underlying Physics Governing the Interaction, Ignition and Combustion Dynamics of Multiple-Injections in Diesel Engines

2022-03-29
2022-01-0445
This work is a comprehensive technical review of existing literature and a synthesis of current understanding of the governing physics behind the interaction of multiple fuel injections, ignition, and combustion behavior of multiple-injections in diesel engines. Multiple-injection is a widely adopted operating strategy applied in modern compression-ignition engines, which involves various combinations of small pre-injections and post-injections of fuel before and after the main injection and splitting the main injection into multiple smaller injections. This strategy has been conclusively shown to improve fuel economy in diesel engines while achieving simultaneous NOX, soot, and combustion noise reduction - in addition to a reduction in the emissions of unburned hydrocarbons (UHC) and CO by preventing fuel wetting and flame quenching at the piston wall.
Technical Paper

A Review of the Requirements for Injection Systems and the Effects of Fuel Quality on Particulate Emissions from GDI Engines

2018-09-10
2018-01-1710
Particulate emissions from Gasoline Direct Injection (GDI) engines have been an important topic of recent research interest due to their known environmental effects. This review paper will characterise the influence of different gasoline direct injection fuel systems on particle number (PN) emissions. The findings will be reviewed for engine and vehicle measurements with appropriate driving cycles (especially real driving cycles) to evaluate effects of the fuel injection systems on PN emissions. Recent technological developments alongside the trends of the influence of system pressure and nozzle design on injector tip wetting and deposits will be considered. Besides the engine and fuel system it is known that fuel composition will have an important effect on GDI engine PN emissions. The evaporation qualities of fuels have a substantial influence on mixture preparation, as does the composition of the fuel itself.
Technical Paper

A Skeletal Kinetic Mechanism for the Oxidation of Iso-Octane and N-Heptane Validated Under Engine Knock Conditions

1999-10-25
1999-01-3484
A method for automatic reduction of detailed kinetic to skeletal mechanisms for complex fuels is proposed. The method is based on the simultaneous use of sensitivity and reaction-flow analysis. The resulting skeletal mechanism is valid for the parameter range of initial and boundary values, the analysis have been performed for. The gas-phase chemistry is analyzed in the end gas of an SI-engine, using a two-zone model. Species, not relevant for the occurrence of autoignition in the end gas, are defined as redundant. They are identified and eliminated for different pre-set levels of minimum reaction flow and sensitivity. The error in the mechanism increases monotony with increasing pre-set level of minimum reaction flow.
Technical Paper

A Theoretical Study of the Potential of NOx Reduction by Fuel Rate Shaping in a DI Diesel Engine

2000-10-16
2000-01-2935
In this paper, a theoretical study is presented where fuel rate shaping is analyzed in combination with EGR as a method for reducing NOx formation. The analytical tools used include an empirically based model to convert fuel rate to heat release rate, and a zero dimensional multizone combustion model to calculate combustion products, local flame temperatures and NOx emissions at a given heat release rate. The multizone model, which has been presented earlier, includes flame radiation and convective heat losses. Several geometrical shapes of the fuel rate are tested for different combustion timings and EGR rates. It is found that the fuel rate giving the lowest NOx formation varies with the injection timing. In order to lower the NOx emissions at normal and advanced injection timings, the fuel rate should have a rather long duration, and start at its maximum level followed by a slow decay.
Technical Paper

A Universal and Cost-Effective Fuel Gauge Sensor Based on Wave Propagation Effects in Solid Metal Rods

1994-03-01
940628
In recognition of safety considerations, modern fuel tanks are frequently extremely irregular in shape. This places limits on the application of conventional potentiometric sensors. Required are more universal sensors without mechanically-moving parts. These sensors should also be characterized by especially good resolution and precision in the residual-quantity range, that is, the zero point precision should be of a high order. One type of metal rod can be bent into any of a variety of shapes to provide an effective means of monitoring the fuel level. In this metal rod, the propagation characteristics of a certain type of sound wave, known as bending waves, display major variations according to the level of the surrounding medium: The waves spread more rapidly through the exposed section of the rod than through the area which remains submerged. Thus the rod's characteristic oscillation frequency varies as a function of immersion depth.
Technical Paper

Acquisition of Corresponding Fuel Distribution and Emissions Measurements in HCCI Engines

2005-10-24
2005-01-3748
Optical engines are often skip-fired to maintain optical components at acceptable temperatures and to reduce window fouling. Although many different skip-fired sequences are possible, if exhaust emissions data are required, the skip-firing sequence ought to consist of a single fired cycle followed by a series of motored cycles (referred to here as singleton skip-firing). This paper compares a singleton skip-firing sequence with continuous firing at the same inlet conditions, and shows that combustion performance trends with equivalence ratio are similar. However, as expected, reactant temperatures are lower with skip-firing, resulting in retarded combustion phasing, and lower pressures and combustion efficiency. LIF practitioners often employ a homogeneous charge of known composition to create calibration images for converting raw signal to equivalence ratio.
Journal Article

Advanced Combustion System Analyses on a 125cc Motorcycle Engine

2011-11-08
2011-32-0557
Environmental consciousness and tightening emissions legislation push the market share of electronic fuel injection within a dynamically growing world wide small engines market. Similar to automotive engines during late 1980's, this opens up opportunities for original equipment manufacturers (OEM) and suppliers to jointly advance small engines performance in terms of fuel economy, emissions, and drivability. In this context, advanced combustion system analyses from automotive engine testing have been applied to a typical production motorcycle small engine. The 125cc 4-stroke, 2-valve, air-cooled, single-cylinder engine with closed-loop lambda-controlled electronic port fuel injection was investigated in original series configuration on an engine dynamometer. The test cycle fuel consumption simulation provides reasonable best case fuel economy estimates based on stationary map fuel consumption measurements.
X