Refine Your Search

Topic

Author

Search Results

Technical Paper

A New Approach to Assess the Accuracy of Service Timing Devices for Injection Pumps of Diesel Engines

1999-03-01
1999-01-0823
The correct timing of the diesel injection pump on engine is of major importance for all functions of the engine and for its exhaust emissions, during production pass off as well as in the field. Within the diesel service workshops a variety of devices exist to test the timing of the injection pump on engine. Most of them operate by clamp-on transducer being fitted to the injection pipe. A large uncertainty exists concerning the accuracy of such timing systems. Most diesel engine manufacturers do not have confidence in the timing devices capability and, therefore, do not recommend their usage. A working group within the International Organization for Standardization (ISO) adopted a method for the validation of these measurement systems, which usually is used to judge the capability of measurement gauges for industrial production processes.
Technical Paper

A Non Contact Strain Gage Torque Sensor for Automotive Servo Driven Steering Systems

1994-03-01
940629
Tapping of one or more torques (ranges 10 Nm and 60 Nm) on the steering column for the purpose of servo control must satisfy high accuracy requirements on the one hand and high safety requirements on the other hand. A suggestion for developing a low-cost solution to this problem is described below: Strain gages optimally satisfy both these requirements: However, for cost reasons, these are not applied directly to the steering column but to a prefabricated, flat steel rod which is laser welded to the torque rod of the steering column. The measuring direction of the strain gages is under 45° to the steering column axis. The strain gages are either vacuum metallized onto the support rod as a thin film or laminated in a particularly low-cost way by means of a foil-type intermediate carrier.
Technical Paper

Advanced Planar Oxygen Sensors for Future Emission Control Strategies

1997-02-24
970459
This paper presents advanced planar ZrO2 oxygen sensors being developed at Robert Bosch using a modified tetragonal partially stabilized zirconia (TZP) with high ionic conductivity, high phase stability and high thermo-mechanical strength. Green tape technology combined with highly automated thickfilm techniques allows robust and cost effective manufacturing of those novel sensing elements. Standardization of assembling parts reduces the complexity of the assembly line even in the case of different sensing principles. The sensor family meets the new requirements of modern ULEV strategies like fast light off below 10 s and linear control capability as well as high quality assurance standards. High volume production will start in 1997 for European customers.
Technical Paper

Analysis of Current Challenges of Automotive Software in the View of Manufacturing

2023-06-26
2023-01-1221
The rapidly growing amount of software in cars reshapes the automotive industry. The software has a significant influence on the production lines, due to the time required to flash it onto the vehicle and its capabilities to test vehicle functions during production. In this paper we identify the main pain points regarding software in the manufacturing process by performing a structured analysis on the experiences made at a major car manufacturer over last two years. Consequently, the paper analyses the possible approaches to address the challenges.
Technical Paper

Application Specific Microcontroller for Multiplex Wiring

1987-02-01
870515
The new aerial communication protocol “Controller Area Network” (CAN) efficiently supports distributed realtime control in automotive applications. In order to unload CPUs from high-speed message transfer, dedicated CAN hardware handles messages up to the communication object level. In multiplex wiring message rates are one to two orders of magnitude lower, allowing to implement the upper communication level more cost-effectively in software. This reduces CAN interface hardware to bitwise protocol handling only. It may be incorporated even into low-end microcontrollers without significantly increasing chip size. Thus the same CAN protocol supports the entire range of serial automotive communication, matching implementation costs to requirements at each performance level.
Technical Paper

Bus System for Wiring Actuators of Restraint Systems

1997-02-24
971053
The continuing increase in the performance of restraint systems has led to a drastic increase in the number of actuator devices. The individual wiring of the igniters becomes more and more problematic through the accompanied large number of plug connections and cables. Along with demands for weight and volume reduction, there are requirements for EMI and short circuit protection to eliminate erroneous deployment and misuse. As a solution, a new multi-protocol dual wire bus system is described that has the capability to supply energy and address multiple peripheral output stages to simultaneously fire any combination of actuators.
Technical Paper

Common Rail - An Attractive Fuel Injection System for Passenger Car DI Diesel Engines

1996-02-01
960870
Passenger car DI Diesel engines need a flexible fuel injection system. Bosch develops a common rail system for this purpose. Besides variation of fuel quantity and start of injection, it permits to choosing freely injection pressure inthe rangeof 150 to 1400 barand injecting fuel in several portions. These new means will contribute to further improvements of DI engines concerning noise, exhaust emissions and engine torque.
Technical Paper

Comparison of Shadowgraph Imaging, Laser-Doppler Anemometry and X-Ray Imaging for the Analysis of Near Nozzle Velocities of GDI Fuel Injectors

2017-10-08
2017-01-2302
The fuel spray behavior in the near nozzle region of a gasoline injector is challenging to predict due to existing pressure gradients and turbulences of the internal flow and in-nozzle cavitation. Therefore, statistical parameters for spray characterization through experiments must be considered. The characterization of spray velocity fields in the near-nozzle region is of particular importance as the velocity information is crucial in understanding the hydrodynamic processes which take place further downstream during fuel atomization and mixture formation. This knowledge is needed in order to optimize injector nozzles for future requirements. In this study, the results of three experimental approaches for determination of spray velocity in the near-nozzle region are presented. Two different injector nozzle types were measured through high-speed shadowgraph imaging, Laser Doppler Anemometry (LDA) and X-ray imaging.
Technical Paper

Design and Mechanics of the Four-Cylinder Engines with 2.0 and 2.2 Litres Displacement

1993-10-01
932926
The objective was to develop a modem engine to succeed the M 102; 2.6 million of these units were made between 1979 and today making it the most successful Mercedes-Benz four-cylinder petrol engine to date. The new M 111 coordinated production set-up together with the familiar M 104 six-cylinder four-valve engines and the 600 diesel series. Emphasis has been deliberately given to improved torque rather than very high volumetric efficiency. This has made it possible to apply four-valve technology, which was originally only to be found in motor racing, in such a way that ordinary customers can benefit form advantages such as high torque and raised power output, as well as reduced fuel consumption and emissions. Extensive noise-reducing measures in the engine ensure that, despite the higher power output and lower engine weight, noise levels have also been improved.
Journal Article

Diesel Lubricity Requirements of Future Fuel Injection Equipment

2009-04-20
2009-01-0848
This paper looks at the underlying fundamentals of diesel fuel system lubrication for the highly-loaded contacts found in fuel injection equipment like high-pressure pumps. These types of contacts are already occurring in modern systems and their severity is likely to increase in future applications due to the requirement for increased fuel pressure. The aim of the work was to characterise the tribological behavior of these contacts when lubricated with diesel fuel and diesel fuel treated with lubricity additives and model nitrogen and sulphur compounds of different chemical composition. It is essential to understand the role of diesel fuel and of lubricity additives to ensure that future, more severely-loaded systems, will be free of any wear problem in the field.
Technical Paper

Driving Performance of a Commercial Vehicle With Adaptive Suspensions

1993-11-01
931970
The settings of adaptive suspension elements may be switched from a comfortable “soft” characteristic to a safe and “firm” characteristic. Thus the possibility is given to not only improve the ride comfort, but the dynamic driving behavior as well, since no compromise must be made between these two criteria when tuning the suspensions. Such systems seem to be very promising for commercial vehicles, as - because of their changing loading conditions - it is very difficult to design an optimal suspension system using conventional springs and dampers. This paper describes the influence of shock absorbers and air springs with variable characteristics on the ride comfort and the dynamic behavior of a 15-t-truck by investigations done with a simulation system. A series production vehicle without adaptive suspension elements serves as basis. At first the results of measurements and simulations are compared and show a very good concurrence.
Technical Paper

Electronically Controlled High Pressure Unit Injector System for Diesel Engines

1991-09-01
911819
To achieve the future emissions regulations with low particulate and Nox levels, both the engine combustion system and the fuel injection equipment will have to be improved. For the fuel injection equipment, high injection pressure and variable injection timing as a function of engine speed, load, and temperature are of great importance. BOSCH is developing two different solutions: electronically controlled unit injector and single cylinder pump systems, high-pressure inline pumps with control sleeve and electronic control. This paper describes: the unit injector and its high-pressure solenoid valve the requirements for the mounting of the unit injector in the engine the low-pressure system the electronic control unit and the metering strategy
Technical Paper

Expansion Devices for R-744 MAC Units

2005-05-10
2005-01-2041
In mobile R-744 A/C units mechanical expansion devices (e.g. orifice tubes) or electronic valves (e.g. PWM-valves) can be used. Besides the costs, aspects like coefficient of performance (COP), cooling capacity or control behavior - especially for extreme conditions - influence the choice of the valve type. This paper will present a comparison between an ideal electronic valve and a two stage mechanical orifice tube under full load and part load conditions. The influence of the expansion valve on COP and cooling capacity in different ambient conditions can be sufficiently described with steady-state simulations. The simulation tools used for this work are based on Modelica/Dymola. The simulation results show that for European climate conditions the use of two-stage orifices might increase fuel consumption.
Technical Paper

Experimental Measurement Techniques to Optimize Design of Gasoline Injection Valves

1992-02-01
920520
In order to reduce the spark-ignition engine exhaust-gas emission and fuel consumption, it is essential that the required air/fuel ratio is maintained under all operating conditions. An important contribution to this claim is delivered by the injection valve by metering the fuel precisely and producing fine atomization. In this report experimental methods to get specific measuring information and methods for optimizing flow in injection valves are described. Original valves as well as large-scale models were used for the investigations concerning the steady and unsteady-flow characteristics, and were equipped with a number of different sensors. Holograms of the short-time recording of the spray cone are generated and used for the quantification of the atomization quality when injecting into atmospheric pressure and into vacuum, thus complying with the conditions encountered in the engine intake-manifold.
Journal Article

Experimental and Numerical Analysis of Sunroof Buffeting of a Simplified Mercedes-Benz S-Class

2021-08-31
2021-01-1051
Sunroof buffeting is examined experimentally and numerically in this paper. Despite the fact that some consider the simulation process for sunroof buffeting to be mature, there remain substantial uncertainties even in recently published methodologies. Capturing the frequencies and especially the sound pressure levels correctly is essential if CFD simulations are intended to be used during early stages of a car development process. Numerous experimental results of sunroof buffeting and the interior low-frequency characteristics of a 2013 Mercedes-Benz S-Class have been used to develop a simplified car model: a full-size S-Class model with slightly simplified geometries in the interior as well as at the exterior. To avoid the effects of numerous different materials in the interior, it is solely made from polyurethane and aluminum and built to maximize its structural rigidity and air-tightness.
Journal Article

Experimental and Numerical Investigation of a Full-Sized Aerodynamic Vehicle Model in Relation to Its Production Car

2021-04-06
2021-01-0963
In this paper, the differences between a production car of the 2018 A-class and an early stage vehicle model with a mostly similar outer skin are examined experimentally and numerically. The aerodynamic development of vehicles at Mercedes-Benz is divided into several phases. When comparing force coefficients differences can be observed between these distinct hardware stages as well as when comparing steady state simulations to wind tunnel measurements. In early phases when prototype vehicles are not yet available, so-called aero foam models are used. These are well-defined full-sized vehicle models, as the outer skin is milled from Polyurethane. Important aerodynamic characteristics such as a motor compartment with a cooling module, deflecting axles with rotatable wheels and underbody covers are represented.
Technical Paper

Extended Oil Drain Intervals: Conservation of Resources or Reduction of Engine Life

1995-02-01
951035
Over the last 40 years it has been possible to lengthen recommended passenger car engine oil drain intervals by up to five times, despite the substantial increases in oil stress through continously rising demands on performance and environmental acceptability. Behind this considerable progress lie improvements in engine design and production technology and the development of suitable advanced engine oil formulations. With increasing oil drain intervals comes a growing uncertainty as to exactly when the oil change should best be made: a fixed mileage applicable to all vehicles is preferred for its practicality but the optimum depends on the driving history of individual vehicles. In Europe a 15000 km oil drain interval is now normal. A further extension based on a fixed interval would give an advantage to a minority of customers but could seriously compromise the durability of engines in the overall vehicle population.
Journal Article

Fault Diagnosis of Fully Variable Valve Actuators on a Four Cylinder Camless Engine

2008-04-14
2008-01-1353
Fully Variable Valve Actuation (FVVA) systems enable to employ a wide range of combustion strategies by providing the actuation of a gas exchange valve at an arbitrary point in time, with variable lift and adjustable ramps for opening and closing. Making such a system ready for the market requires appropriate fault-diagnostic functionality. Here, we focus on diagnosis possibilities by using air intake system sensors such as Manifold Absolute Pressure (MAP) sensors. Results obtained on a 4-cylinder test bench engine are presented for the early intake opening strategy under different loads, and at medium range rotational speeds on steady-state conditions. It is shown that detection and identification of the different critical faults on each actuator is possible by using a Fourier series signal model of the MAP sensor.
Technical Paper

Friction Calculations and Validation Measures on an External Component Test Bench of the Piston Pin Bearing under the Influence of Greater Elastic Deformation Caused by a Hydrostatic Bearing

2021-09-05
2021-24-0001
Increasing combustion pressure, low viscosity oils, less oil supply and the increasing stress due to downsizing of internal combustion engines (ICE) lead to higher loads within the bearing. As the mechanical and tribological loads on the piston pin bearings have a direct impact on the service life and function of the overall engine system, it is necessary to develop a robust tribological design approach. Regarding the piston pin bearing of a diesel engine, this study aims to describe the effects of different parameters on a DLC-coated piston pin within the bearing. Therefore, an external engine part test rig, which applies various forces to the connecting rod and measures the torque on a driven pin, is used to carry out validation measurements. The special feature of the test bench is the way the piston is beared. For the first experiments, the piston crown is placed against a plate (plate-bearing); later, this plate-bearing is replaced by a hydrostatic bearing.
Technical Paper

Fuel Injection Equipment for Heavy Duty Diesel Engines for U. S. 1991/1994 Emission Limits

1989-02-01
890851
The particulate emissions can be reduced by increasing injection pressure. The NOx-emission can be lowered to the required amount with a retarded injection-begin. These measures raise fuel consumption by approximately 8-10 %. To avoid blue smoke from the cold engine, it is advantageous that the fuel injection is advanced during the warm-up period. These statements apply for injection systems with unit injectors as well as for pump-line-nozzle-systems. In this paper, the pump-line-nozzle-system will be described. With this system, injection pressures of 1200 to 1400 bar at the injection nozzle are reached. The injection-begin can be changed with a control-sleeve in-line pump. The injection-begin and fuel quantity can be flexibly and accurately adjusted by means of an electronic governor.
X