Refine Your Search

Topic

Author

Search Results

Technical Paper

A New Approach for Characterization of Fuel Property Influence on Spray Formation in Diesel Engines

2010-10-25
2010-01-2249
Environmental and economical reasons have led to an increased interest in the usage of alternative fuels for combustion engines. To clarify the influence of these so-called future fuels on engine performance and emissions it is mandatory to understand their effect on spray formation. Usually this is done by performing various spray experiments with potential future fuels which are available for research purposes today. Due to the multitude of possible future fuels and therefore the uncertainty of their properties and their influence on spray formation a more general approach was chosen in the present study. The possible range of physical properties of future fuels for diesel engines was identified and more than twenty different fluids with representative properties, mostly one-component chemicals, were chosen by means of design of experiment (DoE).
Technical Paper

A New Approach to Assess the Accuracy of Service Timing Devices for Injection Pumps of Diesel Engines

1999-03-01
1999-01-0823
The correct timing of the diesel injection pump on engine is of major importance for all functions of the engine and for its exhaust emissions, during production pass off as well as in the field. Within the diesel service workshops a variety of devices exist to test the timing of the injection pump on engine. Most of them operate by clamp-on transducer being fitted to the injection pipe. A large uncertainty exists concerning the accuracy of such timing systems. Most diesel engine manufacturers do not have confidence in the timing devices capability and, therefore, do not recommend their usage. A working group within the International Organization for Standardization (ISO) adopted a method for the validation of these measurement systems, which usually is used to judge the capability of measurement gauges for industrial production processes.
Technical Paper

A New Datadriven Approach to Modeling the Combustion of a Diesel Engine in HCCI Mode

2009-04-20
2009-01-0128
The contribution presents a new data driven modeling approach for diesel HCCI combustion. Input parameters of the combustion model are external actuating variables as for example the start of injection. The model incorporates experimental data of the engine in HCCI mode, in the standard diesel mode and in the transition region between both modes. New disclosed dependencies between characteristic values of the cylinder pressure and the fuel burn rate are used to linearize the combustion model for a given operating point. In this paper the validation of the combustion model is discussed based on dynamic measuring data of the urban part of the NEDC. Finally, the combustion model is integrated in a zero-dimensional diesel engine model.
Technical Paper

A Novel CFD Approach for an Improved Prediction of Particulate Emissions in GDI Engines by Considering the Spray-Cooling on the Piston

2015-04-14
2015-01-0385
The emission of particulate matter from future GDI engines has to be optimized, to comply with more stringent emission standards such as EU6. Therefore, the mechanisms responsible for the formation of particles have to be analyzed in detail. The understanding of the in-cylinder processes, necessary for this purpose, can only be achieved by a complementary use of optically accessible single-cylinder engines as well as the numerical simulation. This however leads to great demands on the 3D flow simulation. In this paper the complete CFD approach, incorporating a detailed description of the entire underlying model chain is shown. Particularly the wall surface temperature and the temperature drop due to the interaction with liquid fuel spray were identified as important parameters influencing the spray-wall interaction and thus also the particulate emissions. Nevertheless, in conventional CFD models, the spray cooling cannot be captured because of an assumed constant wall temperature.
Technical Paper

A Rapid Catalyst Heating System for Gasoline-Fueled Engines

2024-04-09
2024-01-2378
Increasingly stringent tailpipe emissions regulations have prompted renewed interest in catalyst heating technology – where an integrated device supplies supplemental heat to accelerate catalyst ‘light-off’. Bosch and Boysen, following a collaborative multi-year effort, have developed a Rapid Catalyst Heating System (RCH) for gasoline-fueled applications. The RCH system provides upwards of 25 kW of thermal power, greatly enhancing catalyst performance and robustness. Additional benefits include reduction of precious metal loading (versus a ‘PGM-only’ approach) and avoidance of near-engine catalyst placement (limiting the need for enrichment strategies). The following paper provides a technical overview of the Bosch/Boysen (BOB) Rapid Catalyst Heating system – including a detailed review of the system’s architecture, key performance characteristics, and the associated impact on vehicle-level emissions.
Technical Paper

Advances in Design and Implementation of OBD Functions for Diesel Injection Based on a Qualitative Approach to Diagnosis

2000-03-06
2000-01-0365
This paper reports on the application of model-based diagnosis techniques to diesel engine management systems within the Brite-EuRam project “Vehicle Model Based Diagnosis”. We discuss some major requirements that have been identified in this application. In particular, it is essential to solve the inherent variant problem, to reason across different physical domains and to fulfill real-time needs for on-board diagnosis. The main foundation of our approach is to use qualitative models, especially qualitative deviation models, which serve as a coherent modeling paradigm for the different domains. In the project, this technology has been implemented and evaluated for on-board diagnosis on two demonstrator vehicles. The paper also discusses further perspectives of the technology for tools supporting the development and implementation of on-board diagnosis.
Technical Paper

Analysis of a Direct Injected Gasoline Engine

1997-02-24
970624
The principle strategy, the development emphasis, and the investigation parameters of a DI gasoline engine are discussed. Several different combustion systems are briefly described and one system where the spark plug is located near the fuel injector is investigated. In addition, the influence of different operating parameters are studied. Some reasons for the improvement in the efficiency of a DI gasoline engine are shown with the help of thermodynamic analysis and simulation calculations. These show that at a constant operating point (engine speed = 2000 rpm, bmep = 2 bar) there is a reduction of the fuel consumption of 23% at unthrottled conditions in comparison to the homogeneous stoichiometric operation. In particular, the reduction of the pumping and heat losses and the reduction of the exhaust gas energy are responsible for this fuel consumption reduction.
Technical Paper

Analysis of the Injection of Urea-Water-Solution for Automotive SCR DeNOx-Systems: Modeling of Two-Phase Flow and Spray/Wall-Interaction

2006-04-03
2006-01-0643
The selective catalytic reduction (SCR) based on urea-water-solution is an effective technique to reduce nitrogen oxides (NOx) emitted from diesel engines. A 3D numerical computer model of the injection of urea-water-solution and their interaction with the exhaust gas flow and exhaust tubing is developed to evaluate different configurations during the development process of such a DeNOx-system. The model accounts for all relevant processes appearing from the injection point to the entrance of the SCR-catalyst: momentum interaction between gas phase and droplets evaporation and thermolysis of droplets hydrolysis of isocyanic acid in gas phase heat transfer between wall and droplets spray/wall-interaction two-component wall film including interaction with gas phase and exhaust tube The single modeling steps are verified with visualizations, patternator measurements, phase-doppler-anemometer results and temperature measurements.
Technical Paper

Bosch System Solutions for Reduction of CO2 and Emissions

2008-01-09
2008-28-0005
For about 20 years now, legislation for emission standards has become more and more strict. Main current standards are LEVII legislation for US- and EU4 for the European Market. Many emerging markets like e.g. China, India, Russia adopt EU regulations (directly or modified. Mid of 90's discussions began on restrictions and legislation for CO2 emissions. The European commission recently proposed concrete legislation standards for 2012 and 2020. These will have strong influence on the strategies of the Car Manufacturers. Single measures like start stop will be of general interest. But for reaching the fleet average combinations of measures in a single engine configuration will be necessary. Bosch system solutions for engine- and power-train management are available for the whole span of world car segments, ranging from value concepts optimized for emerging markets up to high feature solutions for most stringent requirements world wide.
Technical Paper

Common Rail - An Attractive Fuel Injection System for Passenger Car DI Diesel Engines

1996-02-01
960870
Passenger car DI Diesel engines need a flexible fuel injection system. Bosch develops a common rail system for this purpose. Besides variation of fuel quantity and start of injection, it permits to choosing freely injection pressure inthe rangeof 150 to 1400 barand injecting fuel in several portions. These new means will contribute to further improvements of DI engines concerning noise, exhaust emissions and engine torque.
Technical Paper

Control Strategy for NOx - Emission Reduction with SCR

2003-11-10
2003-01-3362
Future emission standards for heavy-duty vehicles like Euro 4, Euro 5, US '07 require advanced engine functionality. One contribution to achieve this target is the catalytic reduction of nitrogen oxides by injection of urea water solution to the exhaust gas. An overview on a urea dosing system, also called DENOXTRONIC, is given and a dosing strategy is described.
Journal Article

Data Based Cylinder Pressure Modeling for Direct-injection Diesel Engines

2009-04-20
2009-01-0679
In this article a new zero-dimensional model is presented for simulating the cylinder pressure in direct injection diesel engines. The model enables the representation of current combustion processes considering multiple injections, high exhaust gas recirculation rates, and turbocharging. In these methods solely cycle-resolved, scalar input variables from the electronic control unit in combination with empirical parameters are required for modeling. The latter are adapted automatically to different engines or modified applications using measured cylinder pressure traces. The verification based on measurements within the entire operating range from engines of different size and type proves the universal applicability and high accuracy of the proposed method.
Technical Paper

Design and Mechanics of the Four-Cylinder Engines with 2.0 and 2.2 Litres Displacement

1993-10-01
932926
The objective was to develop a modem engine to succeed the M 102; 2.6 million of these units were made between 1979 and today making it the most successful Mercedes-Benz four-cylinder petrol engine to date. The new M 111 coordinated production set-up together with the familiar M 104 six-cylinder four-valve engines and the 600 diesel series. Emphasis has been deliberately given to improved torque rather than very high volumetric efficiency. This has made it possible to apply four-valve technology, which was originally only to be found in motor racing, in such a way that ordinary customers can benefit form advantages such as high torque and raised power output, as well as reduced fuel consumption and emissions. Extensive noise-reducing measures in the engine ensure that, despite the higher power output and lower engine weight, noise levels have also been improved.
Technical Paper

Desktop Simulation and Calibration of Diesel Engine ECU Software using Software-in-the-Loop Methodology

2014-04-01
2014-01-0189
Current exhaust gas emission regulations can only be well adhered to through optimal interplay of combustion engine and exhaust gas after-treatment systems. Combining a modern diesel engine with several exhaust gas after-treatment components (DPF, catalytic converters) leads to extremely complex drive systems, with very complex and technically demanding control systems. Current engine ECUs (Electronic Control Unit) have hundreds of functions with thousands of parameters that can be adapted to keep the exhaust gas emissions within the given limits. Each of these functions has to be calibrated and tested in accordance with the rest of the ECU software. To date this task has been performed mostly on engine test benches or in Hardware-in-the-Loop (HiL) setups. In this paper, a Software-in-the-Loop (SiL) approach, consisting of an engine model and an exhaust gas treatment (EGT) model, coupled with software from a real diesel engine ECU, will be described in detail.
Technical Paper

Diesel Boost Pressure Control using Flatness-Based Internal Model Control

2006-04-03
2006-01-0855
As a result of the increased complexity of today's power trains, the traditional ways of designing engine control systems essentially through ad hoc methods and experimental tuning will no longer provide the desired level of performance. Further, it is too time-consuming due to the calibration process. In this paper, a novel model-based controller is described which accommodates many of today's demands on controller development of the automotive industry. The control problem treated here is a boost pressure control of a turbocharged diesel engine with a variable nozzle turbine (VNT). Depending on the injected fuel and the current speed of the diesel engine, the boost pressure has to follow a desired trajectory. Since the system is essentially nonlinear, a robust nonlinear controller is used. The tracking problem is treated by a control method which combines the Internal Model Control (IMC) structure with the flatness-based approach to design feedforward controllers.
Technical Paper

Electronic Control Units of Bosch EDC Systems

1988-02-01
880185
Todays injection systems for diesel engines work with highly sophisticated mechanical governors. But only by electronic control of diesel injection systems will it be possible to comply with the emission regulations and to achieve better performance. In 1986 BOSCH started volume production of Electronic Diesel Control (EDC). This paper will concentrate on the electronic control unit (ECU) as it was designed for use in passenger cars. The production ECU and the planned next-step ECU are outlined, explaining hardware and software. An outlook of development goals of the future EDC control-units is given.
Technical Paper

Electronically Controlled High Pressure Unit Injector System for Diesel Engines

1991-09-01
911819
To achieve the future emissions regulations with low particulate and Nox levels, both the engine combustion system and the fuel injection equipment will have to be improved. For the fuel injection equipment, high injection pressure and variable injection timing as a function of engine speed, load, and temperature are of great importance. BOSCH is developing two different solutions: electronically controlled unit injector and single cylinder pump systems, high-pressure inline pumps with control sleeve and electronic control. This paper describes: the unit injector and its high-pressure solenoid valve the requirements for the mounting of the unit injector in the engine the low-pressure system the electronic control unit and the metering strategy
Journal Article

Engine Start-Up Optimization using the Transient Burn Rate Analysis

2011-04-12
2011-01-0125
The introduction of CO₂-reduction technologies like Start-Stop or the Hybrid-Powertrain and the future emission legislation require a detailed optimization of the engine start-up. The combustion concept development as well as the calibration of the ECU makes an explicit thermodynamic analysis of the combustion process during the start-up necessary. Initially, the well-known thermodynamic analysis of in-cylinder pressure at stationary condition was transmitted to the highly non-stationary engine start-up. There, the current models for calculation of the transient wall heat fluxes were found to be misleading. Therefore, adaptations to the start-up conditions of the known models by Woschni, Hohenberg and Bargende were introduced for calculation of the wall heat transfer coefficient in SI engines with gasoline direct injection. This paper shows how the indicated values can be measured during the engine start-up.
Technical Paper

Engine-Independent Exhaust Gas Aftertreatment Using a Burner Heated Catalyst

2006-10-16
2006-01-3401
Meeting current exhaust emission standards requires rapid catalyst light-off. Closed-coupled catalysts are commonly used to reduce light-off time by minimizing exhaust heat loss between the engine and catalyst. However, this exhaust gas system design leads to a coupling of catalyst heating and engine operation. An engine-independent exhaust gas aftertreatment can be realized by combining a burner heated catalyst system (BHC) with an underfloor catalyst located far away from the engine. This paper describes some basic characteristics of such a BHC system and the results of fitting this system into a Volkswagen Touareg where a single catalyst was located about 1.8 m downstream of the engine. Nevertheless, it was possible to reach about 50% of the current European emission standard EU 4 without additional fuel consumption caused by the BHC system.
Technical Paper

Evaluation of NOx Storage Catalysts for Lean Burn Gasoline Fueled Passenger Cars

1997-02-24
970746
Engine and laboratory tests were carried out to examine the performance of NOx adsorption catalysts for gasoline lean burn engines in fresh and aged condition. The results show that fresh NOx adsorption catalysts have the potential to meet EURO III emission standards. However, to accomplish these the fuel must contain a low sulfur concentration and the engine must be tuned to optimize the efficiency of the catalyst. After engine or furnace aging upto 750°C the catalyst shows some loss of NOx adsorption efficiency. This deterioration can be offset somewhat by increasing the frequency of lean/rich switching of the engine. Temperatures higher than 750°C may cause an irreversible destruction of the NOx, storage features while the three-way activity of the catalyst remains intact or even may improve. With reference to several physicochemical investigations it is believed that the detrimental effect of catalyst aging is attributed to two different deactivation modes.
X