Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Analysis of Steering Model for Emergency Lane Change Based on the China Naturalistic Driving Data

2017-03-28
2017-01-1399
A driver steering model for emergency lane change based on the China naturalistic driving data is proposed in this paper. The steering characteristic of three phases is analyzed. Using the steering primitive fitting by Gaussian function, the steering behaviors in collision avoidance and lateral movement phases can be described, and the stabilization steering principle of yaw rate null is found. Based on the steering characteristic, the near and far aim point used in steering phases is analyzed. Using the near and far aim point correction model, a driver steering model for emergency lane change is established. The research results show that the driver emergency steering model proposed in this paper performs well when explaining realistic steering behavior, and this model can be used in developing the ADAS system.
Technical Paper

Comparison and Analysis of Real Driving Emissions with Different Processing Methods and Driving Behaviors from a Light-Duty Gasoline Vehicle

2022-03-29
2022-01-0573
Real driving emission (RDE) tests are influenced by factors such as data processing methods, driving behaviors, and environmental conditions. Therefore, being able to effectively identify test influence factors is particularly important for RDE emissions-based calibrations. In order to investigate the correlation between data processing methods, driving behaviors and vehicle emissions, the moving average window (MAW) method and cumulative averaging (CA) method were used to compare and analyze the RDE tests data of a light-duty gasoline vehicle under different driving modes in this study. The results showed that in MAW method, carbon monoxide (CO) emissions of urban and total trips calculated by using the front to back window division order were slightly lower compared to the back to front window division order, with an average reduction of 4.68% and 6.33%, respectively. For carbon dioxide (CO2) emissions, the order of window division had the opposite effect as for CO emissions.
Technical Paper

Driver Behavior Classification under Cut-In Scenarios Using Support Vector Machine Based on Naturalistic Driving Data

2019-04-02
2019-01-0136
Cut-in scenario is common in traffic and has potential collision risk. Human driver can detect other vehicle’s cut-in intention and take appropriate maneuvers to reduce collision risk. However, autonomous driving systems don’t have as good performance as human driver. Hence a deeper understanding on driving behavior is necessary. How to make decisions like human driver is an important problem for automated vehicles. In this paper, a method is proposed to classify the dangerous cut-in situations and normal ones. Dangerous cases were extracted automatically from naturalistic driving database using specific detection criteria. Among those cases, 70 valid dangerous cut-in cases were selected manually. The largest deceleration of subject vehicle is over 4 m/s2. Besides, 249 normal cut-in cases were extracted by going through video data of 2000km traveled distance. In normal driving cases, subject vehicle may brake or keep accelerating and the largest deceleration was less than 3 m/s2.
Technical Paper

Naturalistic Driving Behavior Analysis under Typical Normal Cut-In Scenarios

2019-04-02
2019-01-0124
Cut-in scenarios are common and of potential risk in China but Advanced Driver Assistant System (ADAS) doesn’t work well under such scenarios. In order to improve the acceptance of ADAS, its reactions to Cut-in scenarios should meet driver’s driving habits and expectancy. Brake is considered as an express of risk and brake tendency in normal Cut-in situations needs more investigation. Under critical Cut-in scenarios, driver tends to brake hard to eliminate collision risk when cutting in vehicle right crossing lane. However, under less critical Cut-in scenarios, namely normal Cut-in scenarios, driver brakes in some cases and takes no brake maneuver in others. The time when driver initiated to brake was defined as key time. If driver had no brake maneuver, the time when cutting-in vehicle right crossed lane was defined as key time. This paper focuses on driver’s brake tendency at key time under normal Cut-in situations.
X