Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Experimental Investigation on the Effects of Cooled Low Pressure EGR and Water Injection on Combustion of a Turbocharged GDI Engine

2020-09-27
2020-24-0003
This work focuses on the effects of cooled Low Pressure EGR and Water Injection observed by conducting experimental tests consisting mainly of Spark Advance sweeps at different cooled LP-EGR and WI rates. The implications on combustion and main engine performance indexes are then analysed and modelled with a control-oriented approach, showing that combustion duration and phase and exhaust gas temperature are the main affected parameters. Results show that cooled LP-EGR and WI have similar effects, being the associated combustion speed decrease the main cause of exhaust gas temperature reduction. Experimental data is used to identify control-oriented polynomial models able to capture the effects of LP-EGR and WI on both these aspects. The limitations of LP-EGR are also explored, identifying maximum compressor volumetric flow and combustion stability as the main ones.
Technical Paper

High Performance Motorbike Engine Block Structural Calculation

2005-04-11
2005-01-0886
This article, deriving from the author's PhD research activity [1], contains an in-depth analysis of the stresses exerted on the crankcase of a Ducati 999 by its engine. The machine design study was financed by Ducati Motor Holding and involved several doctoral theses [2-3]. It ventures into a relatively unexplored field: the results achieved are set to become strategically important due to the size of the motorcycle market and to the strong appeal of motorcycle racing.
Technical Paper

New Developments in Fuel Injector Atomizer Layouts for Port Fuel Injection Applications to Meet PL6 and ULEV Requirements

2011-10-04
2011-36-0058
The paper presents the background research on the physics of the droplet coalescence phenomena carried out by an interactive usage of high-level 3-D numerical simulation tools and high-level optical visualization and measurement techniques. The presentation continues with the description of a new injector atomizer plate layout, which enables a physical coalescence control of the droplet population within the entire fuel spray. Finally are presented examples of the impact on exhaust emissions of the introduction the new atomizer plate with coalescence control by engine test bed experiments (steady state low load conditions) and vehicle tests (first cold part of the FTP-cycle).
Technical Paper

Powertrain System Design: Functional and Architectural Specifications

2000-11-01
2000-01-C049
Powertrain controller design is among the most challenging problems due to the complexity of the functions that the system has to support, to the safety aspects and to the cost limits imposed by car manufacturers. To compound these difficulties, time-to-market requirements are becoming more and more stringent. Design time, continuously changing specifications and safety considerations have pushed the design more and more towards software implementation of the main functionality. Software has been traditionally designed with very little abstraction in mind thus forcing a tight dependency of the implementation on the particular hardware architecture, e.g., the instruction set of the micro- controller. Software legacy has made the rapid adoption of new technology and IC's almost impossible, stifling innovation. In addition, the absence of a correct abstraction hierarchy made verifying the correctness of the behavior of the system as well as adding new functionality extremely difficult.
X