Refine Your Search

Topic

Author

Search Results

Technical Paper

A Comparison of On-Engine Surge Detection Algorithms using Knock Accelerometers

2017-10-08
2017-01-2420
On-engine surge detection could help in reducing the safety margin towards surge, thus allowing higher boost pressures and ultimately low-end torque. In this paper, experimental data from a truck turbocharger compressor mounted on the engine is investigated. A short period of compressor surge is provoked through a sudden, large drop in engine load. The compressor housing is equipped with knock accelerometers. Different signal treatments are evaluated for their suitability with respect to on-engine surge detection: the signal root mean square, the power spectral density in the surge frequency band, the recently proposed Hurst exponent, and a closely related concept optimized to detect changes in the underlying scaling behavior of the signal. For validation purposes, a judgement by the test cell operator by visual observation of the air filter vibrations and audible noises, as well as inlet temperature increase, are also used to diagnose surge.
Journal Article

A Fast Crank Angle Resolved Zero-Dimensional NOx Model Implemented on a Field-Programmable Gate Array

2013-04-08
2013-01-0344
In the automotive industry, the piezo-based in-cylinder pressure sensor is getting commercialized and used in production vehicles. For example, the pressure sensor offers the opportunity to design algorithms for estimation of engine emissions, such as soot and NO , during a combustion cycle. In this paper a zero-dimensional NO model for a diesel engine is implemented that will be used in real time. The model is based on the thermal NO formation and the Zeldovich mechanism using two non-geometrical zones: burned and unburned zone. The influence of EGR on combustion temperature was modeled using a well-known thermodynamic identity where specific heat at constant pressure is included. Specific heat will vary with temperature and the gas composition. The model was implemented in LabVIEW using tools specific for an FPGA (Field-Programmable Gate Array).
Technical Paper

A Measurement of Fuel Filters’ Ability to Remove Soft Particles, with a Custom-Built Fuel Filter Rig

2020-09-15
2020-01-2130
Biofuel can enable a sustainable transport solution and lower greenhouse gas emissions compared to standard fuels. This study focuses on biodiesel, implemented in the easiest way as drop in fuel. When mixing biodiesel into diesel one can run into problems with solubility causing contaminants precipitating out as insolubilities. These insolubilities, also called soft particles, can cause problems such as internal injector deposits and nozzle fouling. One way to overcome the problem of soft particles is by filtration. It is thus of great interest to be able to quantify fuel filters’ ability to intercept soft particles. The aim of this study is to test different fuel filters for heavy-duty engines and their ability to filter out synthetic soft particles. A custom-built fuel filter rig is presented, together with some of its general design requirements. For evaluation of the efficiency of the filters, fuel samples were taken before and after the filters.
Technical Paper

A State-Space Simplified SCR Catalyst Model for Real Time Applications

2008-04-14
2008-01-0616
The use of Selective Catalytic Reduction (SCR) is becoming increasingly more popular as a way of reducing NOx emissions from heavy duty vehicles while maintaining competitive operating costs. In order to make efficient use of these systems, it's important to have a complete system approach when it comes to calibration of the engine and aftertreatment system. This paper presents a simplified model of a heavy duty SCR catalyst, primarily intended for use in combination with an engine-out emissions model to perform model based offline optimization of the complete system. The traditional way of modelling catalysts using a dense discretization of the catalyst channels and non-linear differential equation solvers to solve the heat and mass balance equations, requires too much computational power in this application. The presented model is also useful in other applications such as model based control.
Technical Paper

A Study of In-Cylinder Fuel Spray Formation and its Influence on Exhaust Emissions Using an Optical Diesel Engine

2010-05-05
2010-01-1498
Increasingly stringent emission legislation as well as increased demand on fuel efficiency calls for further research and development in the diesel engine field. Spray formation, evaporation and ignition delay are important factors that influence the combustion and emission formation processes in a diesel engine. Increased understanding of the mixture formation process is valuable in the development of low emission, high efficiency diesel engines. In this paper spray formation and ignition under real engine conditions have been studied in an optical engine capable of running close to full load for a real HD diesel engine. Powerful external lights were used to provide the required light intensity for high speed camera images in the combustion chamber prior to ignition. A specially developed software was used for spray edge detection and tracking. The software provides crank angle resolved spray penetration data.
Technical Paper

A Study on In-Cycle Control of NOx Using Injection Strategy with a Fast Cylinder Pressure Based Emission Model as Feedback

2013-10-14
2013-01-2603
The emission control in heavy-duty vehicles today is based on predefined injection strategies and after-treatment systems such as SCR (selective catalytic reduction) and DPF (diesel particulate filter). State-of-the-art engine control is presently based on cycle-to-cycle resolution. The introduction of the crank angle resolved pressure measurement, from a piezo-based pressure sensor, enables the possibility to control the fuel injection based on combustion feedback while the combustion is occurring. In this paper a study is presented on the possibility to control NOx (nitrogen oxides) formation with a crank angle resolved NOx estimator as feedback. The estimator and the injection control are implemented on an FPGA (Field-Programmable Gate Array) to manage the inherent time constraints. The FPGA is integrated with the rest of the engine control system for injection control and measurement.
Technical Paper

A Test Rig for Evaluating Thermal Cyclic Life and Effectiveness of Thermal Barrier Coatings inside Exhaust Manifolds

2019-04-02
2019-01-0929
Thermal Barrier Coatings (TBCs) may be used on the inner surfaces of exhaust manifolds in heavy-duty diesel engines to improve the fuel efficiency and prolong the life of the component. The coatings need to have a long thermal cyclic life and also be able to reduce the temperature in the substrate material. A lower temperature of the substrate material reduces the oxidation rate and has a positive influence on the thermo-mechanical fatigue life. A test rig for evaluating these properties for several different coatings simultaneously in the correct environment was developed and tested for two different TBCs and one oxidation-resistant coating. Exhausts were redirected from a diesel engine and led through a series of coated pipes. These pipes were thermally cycled by alternating the temperature of the exhausts. Initial damage in the form of cracks within the top coats of the TBCs was found after cycling 150 times between 50°C and 530°C.
Technical Paper

Acoustic Characterization of Shallow Flow Reversal Chambers

2011-05-17
2011-01-1519
Flow reversal chambers are common design elements in mufflers. Here an idealized flow reversal chamber with large cross-section but small depth has been studied. The inlet and outlet ducts as well as the cross-sectional area are fixed while the depth of the chamber can be varied. The resulting systems are then characterized experimentally using the two-microphone wave decomposition method and compared with results from both finite element modeling and various approaches using two-port elements. The finite element modeling results are in excellent agreement with the measurements over the whole frequency range studied, while two-port modeling can be used with engineering precision in the low frequency range. The influence of mean flow was studied experimentally and was shown to have relatively small influence, mainly adding some additional losses at low frequencies.
Technical Paper

Aerodynamics of Timber Trucks - a Wind Tunnel Investigation

2015-04-14
2015-01-1562
There is a need for reducing fuel consumption and thereby also reducing CO2 and other emissions in all areas of transportation and the forest industry is no exception. In the particular case of timber trucks special care have to be taken when designing such vehicles; they have to be sturdy and operate in harsh conditions and they are being driven empty half the time. It is well known that the aerodynamic resistance constitutes a significant part of the vehicles driving resistance and four areas in particular, front of vehicle, gap, side/underbody and rear of the vehicle contributes about one quarter each. In order to address these issues a wind tunnel investigation was initiated where a 1:6 scale model of a timber truck was designed to operate in a 3.6 m wind tunnel. The present model resembles a generic timber truck with a flexible design such that different configurations could be tested easily.
Technical Paper

Agglomeration and Nucleation of Non-Volatile Particles in a Particle Grouping Exhaust Pipe of a Euro VI Heavy-Duty Diesel Engine

2019-01-15
2019-01-0044
The possibility of non-volatile particle agglomeration in engine exhaust was experimentally examined in a Euro VI heavy duty engine using a variable cross section agglomeration pipe, insulated and double walled for minimal thermophoresis. The agglomeration pipe was located between the turbocharger and the exhaust treatment devices. Sampling was made across the pipe and along the centre-line of the agglomeration pipe. The performance of the agglomeration pipe was compared with an equivalent insulated straight pipe. The non-volatile total particle number and size distribution were investigated. Particle number measurements were conducted according to the guidelines from the Particle Measurement Programme. The Engine was fuelled with commercially available low sulphur S10 diesel.
Journal Article

An In-Cycle based NOx Reduction Strategy using Direct Injection of AdBlue

2014-10-13
2014-01-2817
In the last couple of decades, countries have enacted new laws concerning environmental pollution caused by heavy-duty commercial and passenger vehicles. This is done mainly in an effort to reduce smog and health impacts caused by the different pollutions. One of the legislated pollutions, among a wide range of regulated pollutions, is nitrogen oxides (commonly abbreviated as NOx). The SCR (Selective Catalytic Reduction) was introduced in the automotive industry to reduce NOx emissions leaving the vehicle. The basic idea is to inject a urea solution (AdBlue™) in the exhaust gas before the gas enters the catalyst. The optimal working temperature for the catalyst is somewhere in the range of 300 to 400 °C. For the reactions to occur without a catalyst, the gas temperature has to be at least 800 °C. These temperatures only occur in the engine cylinder itself, during and after the combustion.
Technical Paper

An Investigation of the Degradation of Biodiesel Blends in a Heavy-Duty Diesel Engine

2022-03-29
2022-01-0512
One way to reduce carbon dioxide emissions from the current heavy-duty vehicles fleet is to replace fossil fuel with renewable fuel. This can be done by blending so-called drop-in fuels into the standard diesel fuel. However, problems such as insoluble impurities may arise when the fuels are mixed. These precipitates, known as soft particles, can cause deposits in the fuel system, e.g., injectors and fuel filters, reducing the engine´s performance. The most used drop-in fuel today is biodiesel which, is blended with different concentrations. To better understand how soft particles are formed in the vehicle´s fuel system, the degradation of biodiesel blends in the engine has been investigated. This study explores biodiesel blends´ degradation process by comparing the incoming fuel with the return fuel from a modern diesel engine to investigate how the fuel is affected by this process. The engine was run using different blends of biodiesel fuel.
Technical Paper

Characterisation and Model Based Optimization of a Complete Diesel Engine/SCR System

2009-04-20
2009-01-0896
In order to make efficient use of a Diesel engine equipped with an SCR system, it's important to have a complete system approach when it comes to calibration of the engine and the aftertreatment system. This paper presents a complete model of a heavy duty diesel engine equipped with a vanadia based SCR system. The diesel engine uses common rail fuel injection, a variable geometry turbocharger (VGT) and cooled EGR. The engine model consists of a quasi steady gas exchange model combined with a two-zone zero dimensional combustion model. The combustion model is a predictive heat release model. Using the calculated zone temperatures, the corresponding NOx concentration is given by the original Zeldovich mechanism. The SCR catalyst model is of the state space type. The basic model structure is a series of continuously stirred tank reactors and the catalyst walls are discretized to describe mass transport inside the porous structure.
Journal Article

Characterization of Deposits Collected from Plugged Fuel Filters

2019-09-09
2019-24-0140
Fuel filters serve as a safety belt for modern compression ignition engines. To meet the requirements from environmental regulations these engines use the common rail injection system, which is highly susceptible to contamination from the fuel. Furthermore, the public awareness towards global warming is raising the need for renewable fuels such as biodiesel. An increased fuel variety brings a higher requirement for fuel filters as well. To better understand the process of filtration, awareness of the different possible contaminants from the field is needed. This study used several chemical characterization techniques to examine the deposits from plugged fuel filters collected from the field. The vehicle was run with a biodiesel blend available on the market.
Technical Paper

Characterization of Internal Diesel Injector Deposits from Heavy-Duty Vehicles

2021-09-05
2021-24-0062
Sustainable fuels can help to decrease carbon dioxide emissions in road transportation compared to standard fossil fuels. The most common sustainable fuels used today in heavy-duty applications are biodiesel and hydrogenated vegetable oil (HVO). Biodiesel and HVO are known as drop-in fuels since they are fuels that can be blended with standard diesel. However, due to changes in the chemical properties when the fuels are mixed, solubility problems in terms of precipitates may be formed. These insolubilities can lead to deposits in the fuel system, e.g., blocked fuel filters and internal injector deposits, and thus driveability problems. This study is a part of a project where the goal is to study the processes that cause the formation of deposits inside the injectors in heavy-duty vehicles. The deposits inside the injectors are known as internal diesel injector deposits (IDID).
Technical Paper

Combustion Characteristics, Performance and NOx Emissions of a Heavy-Duty Ethanol-Diesel Direct Injection Engine

2020-09-15
2020-01-2077
Diffusive combustion of direct injected ethanol is investigated in a heavy-duty single cylinder engine for a broad range of operating conditions. Ethanol has a high potential as fossil fuel alternative, as it provides a better carbon footprint and has more sustainable production pathways. The introduction of ethanol as fuel for heavy-duty compression-ignition engines can contribute to decarbonize the transport sector within a short time frame. Given the resistance to autoignition of ethanol, the engine is equipped with two injectors mounted in the same combustion chamber, allowing the simultaneous and independent actuation of the main injection of pure ethanol and a pilot injection of diesel as an ignition source. The influence of the dual-fuel injection strategy on ethanol ignition, combustion characteristics, engine performance and NOx emissions is evaluated by varying the start of injection of both fuels and the ethanol-diesel ratio.
Technical Paper

Comparison of Fuel Filters and Adsorption Filters for Metal Carboxylate Separation

2021-09-05
2021-24-0064
Heavy-duty transportation accounts for significant part of the greenhouse gas emissions. Currently the most common powertrain for long-haul trucks is compression-ignited engines. In order to reduce the greenhouse gas emissions of these engines, renewable fuels, such as biodiesel can be used. Today biodiesel is used as a drop-in fuel, however when biodiesel is mixed with conventional diesel, soft particles may form. Soft particles have been identified as a mixture of insoluble impurities and degradation products in the fuel. These soft particles can lead to deposits in the injection and fuel filtration system, leading to reduced engine performance. In this paper, zinc-neodecanoate and soft particles from the degradation of biodiesel is studied. In both cases, the emphasis is on soap type contaminants. Zinc-neodecanoate has shown to lead to nozzle fouling, while soft particles from degradation of biodiesel have been found in diesel fuel filters.
Technical Paper

Comparison of heat losses at the impingement point and in between two impingement points in a diesel engine using phosphor thermometry

2019-12-19
2019-01-2185
In-cylinder heat losses in diesel engines reduce engine efficiency significantly and account for a considerable amount of injected fuel energy. A great part of the heat losses during diesel combustion presumably arises from the impingement of the flame. The present study compares the heat losses at the point where the flame impinges onto the piston bowl wall and the heat losses between two impingement points. Measurements were performed in a full metal heavy-duty diesel engine with a small optical access through a removed exhaust valve. The surface temperature at the impingement point of the combusting diesel spray and at a point in between two impingement points was determined using phosphor thermometry. The dynamic heat fluxes and the heat transfer coefficients which result from the surface temperature measurements are estimated. Simultaneous cylinder pressure measurements and high-speed videos are associated to individual surface temperature measurements.
Technical Paper

Cycle-To-Cycle Effects and Knock Prediction using Spark Induced Disturbances on a PFI Methanol HD SI Engine

2022-08-30
2022-01-1067
Stoichiometric operation of a Port Fueled Injection (PFI) Spark-Ignited (SI) engine with a three-way catalytic converter offers excellent CO2 reduction when run on renewable fuel. The main drawbacks with stoichiometric operation are the increased knock propensity, high exhaust temperature and reduced efficiency. Knock is typically mitigated with a reactive knock controller, with retarded ignition timing whenever knock is detected and the timing then slowly advanced until knock is detected again. This will cause some cycles to operate with non-ideal ignition timing. The current work evaluates the possibility to predict knock using the measured and modelled temperatures at Inlet Valve Closing (IVC) and Top Dead Center (TDC). Feedback effects are studied beyond steady state operation by using induced ignition timing disturbances.
Technical Paper

Cylinder Pressure Based Cylinder Charge Estimation in Diesel Engines with Dual Independent Variable Valve Timing

2018-04-03
2018-01-0862
With stricter emission legislations and demands on low fuel consumption, new engine technologies are continuously investigated. At the same time the accuracy in the over all engine control and diagnosis and hence also the required estimation accuracy is tightened. Central for the internal combustion control is the trapped cylinder charge and composition Traditionally cylinder charge is estimated using mean intake manifold pressure and engine speed in a two dimensional lookup table. With the introduction of variable valve timing, two additional degrees of freedom are introduced that makes this approach very time consuming and therefore expensive. Especially if the cam phasers are given large enough authority to offer powerful thermal management possibilities. The paper presents a physical model for estimating in-cylinder trapped mass and residual gas fraction utilizing cylinder pressure measurements, and intake and exhaust valve lift profiles.
X