Refine Your Search

Topic

Search Results

Technical Paper

A Research on Autonomous Vehicle Control in Track Beyond Its Limits of Handling

2021-04-06
2021-01-0977
This paper presents the research related to the self-driving system that has been actively carried out recently. Previous studies have been limited to ensure the path following performance in linear and steady state-alike handling region with small lateral acceleration. However, in the high speed driving, the vehicle cornering response is extended to nonlinear region where tire grips are saturated. This requires a technology to create the driving path for minimum time maneuvering while grasping the tire grip limits of the vehicle in real time. The entire controller consists of three stages-hierarchy: The target motion is determined in the supervisor phase, and the target force to follow the target behavior is calculated in the upper stage controller. Finally, the lower stage controller calculates the actuator phase control input corresponding to the target force.
Technical Paper

A study on Reducing the Computing Burden of Misfire Detection using a Conditional Monitoring Method

2004-03-08
2004-01-0722
This paper presents a conditional misfire monitoring method to reduce the computing burden of the motoring. In this conditional monitoring method, the ECU performs misfire detection only when there is high probability of misfire events. The condition for performing the misfire detection is determined by the pre-index which is defined as the deviation of the segment durations of the crankshaft in this paper. The quantity of the code of calculating the pre-index is 7 times less than that of a conventional monitoring method so that the computing burden can be reduced with the conditional monitoring method. The experimental results shown that the pre-index and the conditional monitoring method are valid.
Technical Paper

An Experimental Investigation of In-Cylinder Flow Motion Effect on Dual-Fuel Premixed Compression Ignition Characteristics

2020-04-14
2020-01-0306
The combustion process using two fuels with different reactivity, known as dual-fuel combustion or RCCI is mainly studied to reduce emissions while maintaining thermal efficiency compared to the conventional diesel combustion. Many studies have proven that dual-fuel combustion has a positive prospect in future combustion to achieve ultra-low engine-out emissions with high indicated thermal efficiency. However, a limitation on high-load expansion due to the higher maximum in-cylinder pressure rise rate (mPRR) is a main problem. Thus, it is important to establish the operating strategy and study the effect of in-cylinder flow motion with dual-fuel combustion to achieve a low mPRR and emissions while maintaining high-efficiency. In this research, the characteristics of gasoline-diesel dual-fuel combustion on different hardware were studied to verify the effect of the in-cylinder flow motion on dual-fuel combustion.
Journal Article

An Experimental Study on the Effect of Stroke-to-Bore Ratio of Atkinson DISI Engines with Variable Valve Timing

2018-04-03
2018-01-1419
In this study, fundamental questions in improving thermal efficiency of spark-ignition engine were revisited, regarding two principal factors, that is, stroke-to-bore (S/B) ratio and valve timings. In our experiment, late intake valve closing (LIVC) camshaft and variable valve timing (VVT) module for valve timing control were equipped in the single-cylinder, direct-injection spark-ignition (DISI) engine with three different S/B ratios (1.00, 1.20, and 1.47). In these three setups, displacement volume and compression ratio (CR) were fixed. In addition, the tumble ratio for cylinder head was also kept the same to minimize the flow effect on the flame propagation caused by cylinder head while focusing on the sole effect of changing the S/B ratio.
Technical Paper

An Experimental Study on the Knock Mitigation Effect of Coolant and Thermal Boundary Temperatures in Spark Ignited Engines

2018-04-03
2018-01-0213
Increasing compression ratio is essential for developing future high-efficiency engines due to the intrinsic characteristics of spark-ignited engines. However, it also causes the unfavorable, abnormal knocking phenomena which is the auto-ignition in the unburned end-gas region. To cope with regulations, many researchers have been experimenting with various methods to suppress knock occurrence. In this paper, it is shown that cooling the combustion chamber using coolants, which is one of the most practical methods, has a strong effect on knock mitigation. Furthermore, the relationship between thermal boundary and coolant temperatures is shown. In the beginning of this paper, knock metrics using an in-cylinder pressure sensor are explained for readers, even though entire research studies cannot be listed due to the innumerableness. The coolant passages for the cylinder head and the liner were separated to examine independent cooling strategies.
Technical Paper

An Investigation into Unified Chassis Control based on Correlation with Longitudinal/Lateral Tire Force Behavior

2009-04-20
2009-01-0438
This paper presents a Unified Chassis Control (UCC) strategy to improve vehicle stability and maneuverability by integrating Electronic Stability Control (ESC) and Active Front Steering (AFS). The UCC architecture consists of two parts: an estimator and a controller. The estimator is designed to estimate longitudinal and lateral tire forces and the controller is designed in two stages, namely, an upper level controller and a lower level controller. The upper level controller, provides the desired yaw moment for vehicle lateral stability by adopting a sliding control method. The lower level controller, provides the integration method of the AFS and ESC strategies for the desired yaw moment and is designed by optimal tire force coordination.
Technical Paper

Analysis of the Correlation between Flow and Combustion Characteristics in Spark-Ignited Engine

2021-04-06
2021-01-0463
As global emission standards are becoming more stringent, it is necessary to increase thermal efficiency through the high compression ratio in spark-ignited engines. Various studies are being conducted to mitigate knocking caused by an increased compression ratio, which requires an understanding of the combustion phenomena inside the combustion chamber. In particular, the in-cylinder flow is a major factor affecting the entire combustion process from the generation to the propagation of flames. In the field of spark-ignited engine research, where interest in the concept of lean combustion and the expansion of the EGR supply is increasing, flow analysis is essential to ensure a rapid flame propagation speed and stable combustion process. In this study, the flow around the spark plug was measured by the Laser Doppler Velocimetry system, and the correlation with combustion in spark-ignited engines was analyzed.
Technical Paper

Closed-Loop Evaluation of Vehicle Stability Control (VSC) Systems using a Combined Vehicle and Human Driving Model

2004-03-08
2004-01-0763
This paper presents a closed-loop evaluation of the Vehicle Stability Control (VSC) systems using a vehicle simulator. Human driver-VSC interactions have been investigated under realistic operating conditions in the laboratory. Braking control inputs for vehicle stability enhancement have been directly derived from the sliding control law based on vehicle planar motion equations with differential braking. A driving simulator which consists of a three-dimensional vehicle dynamic model, interface between human driver and vehicle simulator, three-dimensional animation program and a visual display has been validated using actual vehicle driving test data. Real-time human-in-the loop simulation results in realistic driving situations have shown that the proposed controller reduces driving effort and enhances vehicle stability.
Technical Paper

Data-driven Trajectory Planning of Lane Change Maneuver for Autonomous Driving

2023-04-11
2023-01-0687
This paper presents a methodology of trajectory planning for the surrounding-aware lane change maneuver of autonomous vehicles based on a data-driven method. The lateral motion is planned by sampling candidate patterns which are defined based on quintic polynomial functions over time. Based on the cost evaluation among the sampled candidates, the optimal lateral motion pattern is selected as a reference and tracked by the controller. The longitudinal motion is planned and controlled using Model Predictive Control (MPC) which is an optimal control method designed considering the surrounding traffic information. To realize the lane change motion similar to the human driving behavior in the surrounding traffic situation, the human driving pattern is modeled in the form of motion parameters and considered in planning the lateral and longitudinal motion.
Technical Paper

Enhancing Performance and Combustion of an LPG MPI Engine for Heavy Duty Vehicles

2002-03-04
2002-01-0449
An LPG engine for heavy duty vehicles has been developed using liquid phase LPG injection (hereafter LPLI) system, which has regarded as as one of next generation LPG fuel supply systems. In this work the optimized piston cavities were investigated and chosen for an LPLI engine system. While the mass production of piston cavities is considered, three piston cavities were tested: Dog-dish type, bathtub type and top-land-cut bathtub type. From the experiments the bathtub type showed the extension of lean limit while achieving the stable combustion, compared to the dog-dish type at the same injection timing. Throughout CFD analysis, it was revealed that the extension of lean limit was due to an increase of turbulence intensity by the enlarged crevice area, and the enlargement of flame front surface owing to the shape of the bathtub piston cavity compared to that of the dog-dish type.
Technical Paper

Estimation of Side Slip Angle Interacting Multiple Bicycle Models Approach for Vehicle Stability Control

2019-04-02
2019-01-0445
This paper presents an Interacting Multiple Model (IMM) based side slip angle estimation method to estimate side slip angle under various road conditions for vehicle stability control. Knowledge of the side slip angle is essential enhancing vehicle handling and stability. For the estimation of the side slip angles in previous researches, prior knowledge of tire parameters and road conditions have been employed, and sometimes additional sensors have been needed. These prior knowledge and additional sensors, however, necessitates many efforts and make an application of the estimation algorithm difficult. In this paper, side slip angle has been estimated using on-board vehicle sensors such as yaw rate and lateral acceleration sensors. The proposed estimation algorithm integrates the estimates from multiple Kalman filters based on the multiple models with different parameter set.
Technical Paper

Integrated Control of In-Wheel Motor and Electronic Limited Slip Differential for Lateral Stability and Maneuverability

2021-04-06
2021-01-0974
This paper presents an integrated control of in-wheel motor (IWM) and electronic limited slip differential (eLSD) to enhance the vehicle lateral stability and maneuverability. The two actuators are utilized in the proposed controller to achieve separate purposes. The IWM controller is designed to modify the understeer gradient for enhanced handling characteristic and maneuverability. The eLSD controller is devised to improve the lateral stability to prevent oversteer in a severe maneuver. The proposed controller consists of a supervisor, upper-level controller and lower-level controller. The supervisor determines a target motion based on a target understeer gradient for IWM control and a yaw rate reference for eLSD control. The upper-level controller generates a desired yaw moment for the target motion. In the lower-level controller, the desired yaw moment is converted to the control inputs for IWMs in the two front wheels and eLSD at the rear axle.
Technical Paper

Measurements and Modeling of Residual Gas Fraction in SI Engines

2001-05-07
2001-01-1910
The residual gas in SI engines is one of important factors on emission and performance such as combustion stability. With high residual gas fractions, flame speed and maximum combustion temperature are decreased and there are deeply related with combustion stability, especially at Idle and NOx emission at relatively high engine load. Therefore, there is a need to characterize the residual gas fraction as a function of the engine operating parameters. A model for predicting the residual gas fraction has been formulated in this paper. The model accounts for the contribution due to the back flow of exhaust gas to the cylinder during valve overlap and it includes in-cylinder pressure prediction model during valve overlap. The model is derived from the one dimension flow process during overlap period and a simple ideal cycle model.
Technical Paper

Model Validation of the Chevrolet Volt 2016

2018-04-03
2018-01-0420
Validation of a vehicle simulation model of the Chevrolet Volt 2016 was conducted. The Chevrolet Volt 2016 is equipped with the new “Voltec” extended-range propulsion system introduced into the market in 2016. The second generation Volt powertrain system operates in five modes, including two electric vehicle modes and three extended-range modes. Model development and validation were conducted using the test data performed on the chassis dynamometer set in a thermal chamber of Argonne National Laboratory’s Advanced Powertrain Research Facility. First, the components of the vehicle, such as the engine, motor, battery, wheels, and chassis, were modeled, including thermal aspects based on the test data. For example, engine efficiency changes dependent on the coolant temperature, or chassis heating or air-conditioning operations according to the ambient and cabin temperature, were applied.
Technical Paper

Modeling of Unburned Hydrocarbon Oxidation in Engine Conditions using Modified One-step Reaction Model

2007-08-05
2007-01-3536
Modeling of unburned hydrocarbon oxidation in an SI engine was performed in engine condition using modified one-step oxidation model. The new one-step equation was developed by modifying the Arrhenius reaction rate coefficients of the conventional one-step model. The modified model was well matched with the results of detailed chemical reaction mechanism in terms of 90 % oxidation time of the fuel. In this modification, the effect of pressure and intermediate species in the burnt gas on the oxidation rate investigated and included in developed one-step model. The effect of pressure was also investigated and included as an additional multiplying factor in the reaction equation. To simulate the oxidation process of piston crevice hydrocarbons, a computational mesh was constructed with fine mesh density at the piston crevice region and the number of cell layers in cylinder was controlled according to the motion of piston.
Technical Paper

Radiative Heat Transfer in Non-Gray Finite Cylindrical Media with Internal Heat Generations

1989-11-01
891332
Radiative heat transfer analysis in a finite cylindrical enclosure with non-gray media and internal heat generations have been conducted. Solutions are generated by a recently developed spherical harmonics method for a finite cylindrical configuration with the weighted sum of gray gases model. Numerical solutions are obtained for temperature and heat flux distributions with the variations of optical thickness and wall emissivity. The results show that with an increase in the absorption coefficient, the heat flux distribution along the lateral wall becomes symmetric regardless of the source distributions. The dependence of heat flux on the wall emissivity is reduced as well. The present solution technique seems to be easily extended to the coupled mode of heat transfer with convection in an engine cylinder.
Technical Paper

Rear-Wheel Steering Control for Enhanced Maneuverability of Vehicles

2019-04-02
2019-01-1238
This paper proposes a rear-wheel steering control method that can modify and improve the vehicle lateral response without tire model and parameter. The proposed control algorithm is a combination of steady-state and transient control. The steady state control input is designed to modify steady-state yaw rate response of the vehicle, i.e. understeer gradient of the vehicle. The transient control input is a feedback control to improve the transient response when the vehicle lateral behavior builds up. The control algorithm has been investigated via computer simulations. Compared to classical control methods, the proposed algorithm shows good vehicle lateral response such as small overshoot and fast response. Specifically, the proposed algorithm can alleviate stair-shaped response of the lateral acceleration.
Journal Article

Skid Steering Based Maneuvering of Robotic Vehicle with Articulated Suspension

2009-04-20
2009-01-0437
This paper describes a driving control algorithm based on skid steering for a Robotic Vehicle with Articulated Suspension (RVAS). The driving control algorithm consists of four parts; speed controller for tracking of the desired speeds, yaw rate controller which computes a yaw moment input to track desired yaw rates, longitudinal tire force distribution which determines an optimal desired longitudinal tire force and wheel torque controller which determines a wheel torque command at each wheel to keep slip ratio at each wheel below a limit value as well as track the desired tire force. Longitudinal and vertical tire force estimators are designed for optimal tire force distribution and wheel slip control. The dynamic model of RVAS for simulation study is validated using vehicle test data.
Technical Paper

Stability Monitoring Algorithm with a Combined Slip Tire Model for Maximized Cornering Speed of High-Speed Autonomous Driving

2023-04-11
2023-01-0684
This paper presents a stability monitoring algorithm with a combined slip tire model for maximized cornering speed of high-speed autonomous driving. It is crucial to utilize the maximum tire force with maintaining a grip driving condition in cornering situations. The model-free cruise controller has been designed to track the desired acceleration. The lateral motion has been regulated by the sliding mode controller formulated with the center of percussion. The controllers are suitable for minimizing the behavior errors. However, the high-level algorithm is necessary to check whether the intended motion is inside of the limit boundaries. In extreme diving conditions, the maximum tire force is limited by physical constraints. A combined slip tire model has been applied to monitor vehicle stability. In previous studies, vehicle stability was evaluated only by vehicle acceleration.
Technical Paper

Steering Wheel Torque Control of Steer-by-Wire System for Steering Feel

2017-03-28
2017-01-1567
This paper proposes a reference steering wheel torque map and a torque tracking algorithm via steer-by-wire to achieve the targeted steering feel. The reference steering wheel torque map is designed using the measurement data of rack force and steering characteristic of a target performance of the vehicle at transition steering test. Since the target performance of the vehicle is only tested in nominal road condition, various road conditions such as disturbances and tire-road friction are not considered. Hence, the measurement data of the rack force that reflects the road conditions in the reference steering wheel torque map have been used. The rack force is the net force which consists of tire aligning moment, road friction force and normal force on the tire kingpin axis. A motor and a magnetorheological damper are used as actuators to generate the desired steering feel using the torque tracking algorithm.
X