Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Experimental Research on Mixture Distribution of Diesel Premixed Low-Temperature Combustion

2015-09-01
2015-01-1839
The diesel premixed low-temperature combustion mode avoids the generation of thick mixture and the high temperature region in which a great amount of NOx and PM generates. It makes a significant reduction in the emissions of both NOx and PM available at the same time. However, with the quantity of pre-injection increases and the injection time advances, the emission of HC increases significantly, which causes a decrease in the combustion efficiency. Studies have shown that the flame quench caused by too thick or too lean mixture and the oil film on the chamber is the main source for the emission of HC. As a result, understanding the mechanism of atomization and evaporation of the fuel and the formation of the mixture makes significant sense. This paper focuses on the mixture formation process. And the methods of testing the distribution of the mixture, the influential factors and control methods are studied.
Journal Article

Experimental Study on the Three-phase Sequential Turbocharging System with Two Unequal Size Turbochargers

2008-06-23
2008-01-1698
To improve the vehicle diesel engine performance at part-load operation, experiments on sequential turbocharging system used in a vehicle diesel engine are investigated in this paper. The brake specific fuel consumption and smoke emission of diesel engine are measured in four schemes: with the based turbocharger, with a small turbocharger, with a big turbocharger, with both small and big turbochargers. Then, a new turbocharging method named three-phase sequential turbocharging system with two unequal size turbochargers is presented by analyzing and comparing the experimental results. The experiment on a vehicle diesel engine with three-phase sequential turbocharging system shows that the brake specific fuel consumption and the smoke emission are reduced observably in complete engine speeds range, especially in the low speed operation. Finally, the transient performances of three-phase sequentially turbocharged vehicle diesel engine are analyzed by experiments.
Technical Paper

Improve Combustion During Cold Start of DI Diesel Engine by EGR Under Normal Ambient Temperature

2008-04-14
2008-01-1084
During cold start of DI diesel engine, exhaust gas comprises a great deal of unburned hydrocarbon, fuel vapor, and product of partial oxidation reaction. If these compositions are reintroduced into cylinder by EGR, the positive effects may shorten ignition delay, and thus promote ignition. Furthermore, considering thermal effect of EGR and its minor dilution effect during cold start, the combustion performance of cold start could also be promoted through introducing EGR. Through experiments conducted on a 135 single cylinder DI diesel engine, effects of EGR on combustion and emission performance during cold start process were investigated. Comparison of combustion performance between cold start processes with and without EGR suggested that it is an effective measure to improve cold startability of DI diesel engine by controlling EGR system during cold start.
X