Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Extending the Limits of Fuel Economy through Lubrication

2017-10-08
2017-01-2344
It is anticipated that worldwide energy demand will approximately double by 2050, whilst at the same time, CO2 emissions need to be halved. Therefore, there is increasing pressure to improve the efficiency of all machines, with great focus on improving the fuel efficiency of passenger cars. The use of downsized, boosted, gasoline engines, can lead to exceptional fuel economy, and on a well-to-wheels basis, can give similar CO2 emissions to electric vehicles (depending, of course, on how the electricity is generated). In this paper, the development of a low weight concept car is reported. The car is equipped with a three-cylinder 0.66 litre gasoline engine, and has achieved over 100 miles per imperial gallon, in real world driving conditions.
Technical Paper

Lubricant Impact on Friction by Engine Component: A Motored Friction Tear Down Assessment of a Production 3.6L Engine

2019-12-19
2019-01-2239
Worldwide, Fuel Economy (FE) legislation increasingly influences vehicle and engine design, and drives friction reduction. The link between lubricant formulation and mechanical friction is complex and depends on engine component design and test cycle. This Motored Friction Tear Down (MFTD) study characterizes the friction within a 3.6L V6 engine under operating conditions and lubricant choices relevant to the legislated FE cycles. The high-fidelity MFTD results presented indicate that the engine is a low-friction engine tolerant of low viscosity oils. Experiments spanned four groups of engine hardware (reciprocating, crankshaft, valvetrain, oil pump), five lubricants (four candidates referenced against an SAE 0W-20) and five temperature regimes. The candidate lubricants explored the impact of base oil viscosity, viscosity modifier (VM) and friction modifier (FM) content.
Technical Paper

Numerical Analysis on the Potential of Reducing DPF Size Using Low Ash Lubricant Oil

2018-09-10
2018-01-1760
Diesel particulate filter (DPF) is necessary for diesel engines to meet the increasingly stringent emission regulations. Many studies have demonstrated that the lubricant derived ash has a significant effect on DPF pressure drop and engine fuel economy, and this effect becomes more and more severe with the increasing of operating hours of the DPF because the ash accumulated in the DPF cannot be removed by regeneration. It is reported that most of the DPFs operated with more ash than soot in the filter for more than three quarters of the time during its lifetime [1]. In order to mitigate this problem, the original engine manufacturers (OEM) tend to use an oversized DPF for the engine. However, it will increase the costs of the DPF and reduce the compactness of the engine aftertreatment system.
Technical Paper

Simulated Bearing Durability and Friction Reduction with Ultra-Low Viscosity Oils

2018-09-10
2018-01-1802
Legislation aimed at reducing carbon dioxide emissions is forcing significant changes in passenger car engine hardware and lubricants. Reduced viscosity lubricants can reduce friction levels and are therefore helpful to manufacturers seeking legislative compliance. MAHLE and Shell have worked together to determine the crankshaft, bearing and lubricant combination which minimizes friction with an acceptable level of durability. This paper describes the results of our joint simulation studies. MAHLE Engine Systems have developed in-house simulation packages to predict bearing lubrication performance. SABRE-M is a “routine” simulation tool based on the mobility method [1] curve fitting from the finite bearing theory to simulate the hydrodynamic lubrication in steady-state conditions. Whereas, SABRE-TEHL is a specialized simulation package used for performing Thermo-Elasto-Hydrodynamic Lubrication (TEHL) analysis of bearing systems.
Journal Article

The Effect of Engine, Axle and Transmission Lubricant, and Operating Conditions on Heavy Duty Diesel Fuel Economy. Part 1: Measurements

2011-08-30
2011-01-2129
It is expected that the world's energy demand will double by 2050, which requires energy-efficient technologies to be readily available. With the increasing number of vehicles on our roads the demand for energy is increasing rapidly, and with this there is an associated increase in CO₂ emissions. Through the careful use of optimized lubricants it is possible to significantly reduce vehicle fuel consumption and hence CO₂. This paper evaluates the effects on fuel economy of high quality, low viscosity heavy-duty diesel engine type lubricants against mainstream type products for all elements of the vehicle driveline. Testing was performed on Shell's driveline test facility for the evaluation of fuel consumption effects due to engine, gearbox and axle oils and the variation with engine operating conditions.
Journal Article

The Effect of Engine, Axle and Transmission Lubricant, and Operating Conditions on Heavy Duty Diesel Fuel Economy: Part 2: Predictions

2011-08-30
2011-01-2130
A predictive model for estimating the fuel saving of “top tier” engine, axle and transmission lubricants (compared to “mainstream” lubricants), in a heavy duty truck, operating on a realistic driving cycle, is described. Simulations have been performed for different truck weights (10, 20 and 40 tonnes) and it was found that the model predicts percentage fuel economy benefits that are of a similar magnitude to those measured in well controlled field trials1. The model predicts the percentage fuel saving from the engine oil should decrease as the vehicle load increases (which is in agreement with field trial results). The percentage fuel saving from the axle and gearbox oils initially decreases with load and then stays more or less constant. This behaviour is due to the detailed way in which axle and gearbox efficiency varies with speed/load and lubricant type.
X