Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Adaptation of Turbocharger to Small Displacement Single Cylinder SI Engine

2015-11-17
2015-32-0823
This paper represents the adaptation of turbo charger to single cylinder 450cc SI engine which is used for the student formula competition. The experiment and 1D engine simulation called as GT-Power were performed to confirm the effect of valve profile, compression ratio and air fuel ratio on the engine performance under the naturally aspirated condition. The maximum valve lift of the intake valves increased 27% and that of the exhaust valves increased 15% as compared with the low profile cam. The compression ratio was increased from 12.3 to 13.5 by changing the piston top land length in order to improve the thermal efficiency. It was confirmed that the torque peak was moved from 6000 rpm to 8000 rpm by changing the valve profile. Furthermore, turbo charger was adapted to the engine as changing the capacity of the turbocharger, the maximum boost pressure and the air fuel ratio.
Technical Paper

Evaluation of On-board Heat Loss Prediction Model and Polytropic Index Prediction Model for CI Engines Using Measurements of Combustion Chamber Wall Heat Flux

2020-01-24
2019-32-0543
Diesel engines need to optimize the fuel injection timing and quantity of each cycle in the transient operation to increase the thermal efficiency and reduce the exhaust gas emissions through the precise combustion control. The heat transfer from the working gas in the combustion chamber to the chamber wall is a crucial factor to predict the gas temperature in the combustion chamber to optimize the timing and quantity of fuel injection. Therefore, the authors developed both the heat loss and the polytropic index prediction models with the low calculation load and high accuracy. In addition, for the calculation of the heat loss and the polytropic index, the wall heat transfer model was also developed, which was derived from the continuity equation and the energy equation. The present study used a single cylinder diesel engine under the condition of engine speed of 1200 and 1500 rpm, and measured the local wall temperature and the local heat flux of the combustion chamber.
Technical Paper

Heat Transfer in the Internal Combustion Engines

2000-03-06
2000-01-0300
This investigation was concerned with the rate of heat transfer from the working gases to the combustion chamber walls of the internal combustion engines. The numerical formula for estimating the heat transfer to the combustion chamber wall was derived from the theoretical analysis and the experiment, which were used the constant volume combustion chamber and the actual gasoline engine. As a result, mean heat transfer in the internal combustion engine becomes possible to estimate with measuring the cylinder pressure. In addition, the derived numerical formula forms with quite simple variables. Therefore it is very useful for engine design.
Technical Paper

Influence of Secondary Flow Generation on Heat Transfer inside the Fin Type Spiral Sub-Cooled Condenser by Experimental and CFD Analysis

2018-10-30
2018-32-0054
This paper discusses the compact structure, innovative and unique approach of high performance spiral coil sub-cooled condenser for compact power plant/engine applications. The motivation behind this study is to reduce the engine emission by improving the coefficient of performance for air-conditioning unit. Since the air conditioning system is the most power consumption units after the power plant, so it significantly affects the fuel consumption and the hazardous gas emissions. In the air condition cycle, the condenser unit is addressed as one of the important devices, and thus, the author tried to reduce the energy consumption by improving the performance of the condenser. The most advantage points of this study is to use spiral coil sub-cooled condenser, which elaborates the effect of secondary flow generation inside the fluid and is known as the Dean’s effect.
Technical Paper

Measurement of Temperature Distribution Nearby Flame Quenching Zone by Real-Time Holographic Interferometry

2004-03-08
2004-01-1761
Temperature distribution as the flame propagated and contacted to the wall of the combustion chamber was measured by real-time holographic interference method, which mainly consisted of an argon-ion laser and a high-speed video camera. The experiment was done with a constant volume chamber and propane-air mixture with several kinds of equivalence ratios. From the experimental results, it can be found that the temperature distribution outside the zone from the surface of the combustion chamber to 0.1mm distance could be measured by counting the number of the interference fringes, but couldn't within this zone because of lacking in the resolution of the used optical system. The experimental results show that the temperature distribution when the heat flux on the wall increases rapidly and when the heat flux shows the maximum value are quite different by the equivalence ratio.
X