Refine Your Search

Topic

Search Results

Technical Paper

A Control Strategy to Reduce Torque Oscillation of the Electric Power Steering System

2019-06-05
2019-01-1516
This paper proposes a new evaluation method of analyzing stability and design of a controller for an electric power steering (EPS) system. The main purpose of the EPS system’s control design is to ensure a comfortable driving experience of drivers, which mainly depends on the assist torque map. However, the high level of assist gain and its nonlinearity may cause oscillation, divergence and instability to the steering systems. Therefore, an EPS system needs to have an extra stability controller to eliminate the side effect of assist gain on system stability and attenuate the unpleasant vibration. In this paper, an accurate theoretical model is built and the method for evaluating system quality are suggested. The bench tests and vehicle experiments are carried out to verify the theoretical analysis.
Technical Paper

A Fatigue Life Prediction Method of Rubber Material for Automobile Vibration Isolator under Road Load Spectrum

2022-03-29
2022-01-0253
Automobile rubber isolator was subjected to random load cycle for a long time in the service process, and its main rubber material for vibration isolation was prone to fatigue failure. Since the traditional Miner damage theory overlooked the load randomness, it had a prediction error problem. In order to improve the prediction accuracy of rubber fatigue life, the traditional Miner damage theory was modified by random uncertainty theory to predict the rubber fatigue life under random load. Firstly, the rubber dumbbell-shaped test column, which was vulcanized from rubber materials commonly used in vibration isolators, was taken as the research object. The uniaxial fatigue test of rubber under different strain amplitudes and strain mean values was carried out. Then the fatigue characteristic curve of rubber with equivalent strain amplitude as the damage parameter was established.
Technical Paper

A Method for Calculating High Frequency Dynamic Characteristics of Rubber Isolators under Different Preloads

2022-03-29
2022-01-0307
Because the power unit of electric vehicle has large torque, the rubber mount of electric vehicle is fully compressed under the condition of full throttle acceleration. When designing the mount of electric vehicle, the dynamic-to-static stiffness ratio of mount under the case should be as low as possible to improve the vibration isolation rate of the mount. In this paper, a method for calculating the high frequency dynamic characteristics of rubber isolators under different preloads is presented. Firstly, the dynamic characteristics of rubber specimens under various shear pre-strains were tested. The test results show that the dynamic stiffness of specimen decreases at first and then increases with the increase of shear strain. The viscoelastic parameters of rubber in frequency domain under different pre-strain were identified according to the experimental data. Secondly, a finite element modeling method was proposed.
Technical Paper

A Method for Identifying Tortuosity, Viscous Characteristic Length and Thermal Characteristic Length of Kapok Mixed Fiber Porous Materials

2023-05-08
2023-01-1058
Tortuosity, viscous characteristic length and thermal characteristic length are three important parameters for estimating the acoustic performance of porous materials, and it is usually measured by ultrasonic measurement technology, which is costly. In this paper, a method for identifying the tortuosity, viscous characteristic length and thermal characteristic length for the porous fiber materials mixed with kapok fiber and two kinds of other fiber materials is proposed. The tortuosity is calculated by using the porosity and high-frequency normal sound absorption coefficient of porous materials. According to the normal sound absorption coefficient curve of porous materials under plane wave incidence, viscous characteristic length and thermal characteristic length are identified through the Johnson-Champoux-Allard-Lafarge (JCAL) model and genetic algorithm by using the measured parameters, the calculated tortuosity and static thermal permeability.
Technical Paper

A Method for Predicting Fatigue Life of Rubber Isolators at Power Spectral Density Load

2024-04-09
2024-01-2261
Rubber isolators are widely used under random vibrations. In order to predict their fatigue life, a study on the fatigue analysis methodology for rubber isolators is carried out in this paper. Firstly, taking a mount used for isolating air conditioning compressor vibrations as studying example, accelerations versus time of rubber isolator at both sides are acquired for a car under different running conditions. The acceleration in time domain is transformed to frequency domain using the Fourier transform, and the acceleration power spectral density (PSD) is the obtained. Using the PSD as input, fatigue test is carried for the rubber isolator in different temperature and constant humidity conditions. A finite element model of the rubber isolator using ABAQUS is established for estimating fatigue life, and model validity is verified through static characteristic testing. Dynamic responses of the rubber isolator at frequency domain are calculated if a unit load is applied.
Technical Paper

A Novel Kind of Proportional Electromagnetic Dynamic Vibration Absorber

2019-06-05
2019-01-1586
A new proportional electromagnetic dynamic vibration absorber (EDVA) is proposed for control of engine vibration during idling. The device consists of an electromagnetic actuator attached to the primary structure through elastic element, where the driving force pair is implemented between the reaction-mass and the primary structure. The design of the proportional electromagnetic actuator is realized considering the geometric parameters of the core to achieve nearly constant magnetic force over a broad range of its dynamic displacement but proportional to square of the current. A methodology is proposed to achieve magnetic force proportional to square of current and consistent with the disturbance frequency. The proportional EDVA is subsequently applied to a single-degree-of-freedom primary system with an acceleration feedback control algorithm for attenuation of primary system vibration in a frequency band around the typical idling vibration frequencies.
Technical Paper

A Research on Modeling and Pressure Control of Integrated Electro-Hydraulic Brake System

2021-04-06
2021-01-0130
A fourth-order mathematical model for I-EHB (integrated electro-hydraulic brake) system was derived from its mechanical and hydraulic subsystems. The model was linearized at equilibrium state and then was verified by AMESIM software. The friction model of the system was analyzed based on static friction and viscous friction. A bench test was designed to identify the parameters of friction model. As the I-EHB system worked at different braking conditions, a PID-based switching controller was designed to track the target servo cylinder pressure. Both simulations and experiments results showed that, the response time of pressure was less than 120ms, and there was no overshoot, which helped handling different braking conditions and improving the braking safety and comfort.
Technical Paper

A Study on Editing Method of Road Load Spectrum of Automobile Rubber Isolator Using Time-Frequency Domain Methods

2022-03-29
2022-01-0272
In order to enhance the efficiency of durability testing of automobile parts, a time-frequency domain accelerated editing method of road load time series of rubber mount on powertrain was discussed. Based on Stockwell Transform method and Accumulative Power Spectral Density, a new time-frequency domain accelerated editing method (ST-APSD) was proposed. The accumulative power spectral density was obtained by ST of the load time series signal of automobile powertrain rubber mounting force which is acquired by the real vehicle in the test field. Based on the accumulative power spectral density, the threshold value was proposed to identify and delete the small damage load fragments, and then the acceleration spectrum was obtained.
Technical Paper

A Study on Sliding Mode Control for Active Suspension System

2020-04-14
2020-01-1084
Sliding mode control with a disturbance observer (SMC-DO) is proposed for suppressing the sprung mass vibration in a quarter-car with double-wishbone active suspension system (ASS), which contains the geometry structure of the upper and lower control arms. The governing equations of double-wishbone ASS are obtained by the balance-force analysis of the sprung mass in ASS. Considering uncertainties in damping, stiffness, and external disturbance acting on the sprung mass, we design a disturbance observer based on a sliding mode control (SMC) to estimate these uncertainties under the unknown road excitation. By the Lyapunov minimax approach, the uniform boundedness and the uniform ultimate boundedness of ASS with the proposed control are rigorously proved. Through co-simulation of ADAMS software and MATLAB/Simulink software, the sprung mass acceleration of ASS can be obtained with and without the proposed control.
Technical Paper

A Switching Control Strategy for Multiple Heating Modes Based on the Integrated Thermal Management System of Electric Vehicles

2024-04-09
2024-01-2233
To reduce the heating energy consumption of electric vehicles in winter, a switching control strategy for multiple heating modes formed by three heat sources, including air, motor waste heat, and positive temperature coefficient (PTC) heaters, is designed. Firstly, an integrated thermal management system (ITMS) simulation model for the heat pump air conditioning system, battery thermal management system, and motor thermal management system is established based on the AMESim software. Secondly, the influence of ambient temperature and motor outlet coolant temperature on the heating performance of three cabin heating modes is studied. Specifically, the three cabin heating modes include the pure motor waste heat source heat pump mode, the pure air-source heat pump mode, and the dual heat source heat pump mode with waste heat source and air source. Based on the analysis results, the opening and closing strategies for the three cabin heating modes are discussed.
Technical Paper

An Approximate Estimation Method for Transmission Loss Peak Frequency of Membrane-Type Acoustic Metamaterials

2021-04-06
2021-01-0672
Membrane-type acoustic metamaterials consist of a tensioned membrane fixed on the frame and an additional mass attached to the membrane. The sound insulation performance of membrane-type acoustic metamaterials is much better than the acoustic mass law predictions at transmission loss (TL) peak frequencies. In this paper, an equivalent mechanical model of membrane-type metamaterials is established. Through the vibration analysis of the membrane with tensile force as the main elastic restoring force, an approximate estimation method of the TL peak frequency of Membrane-type acoustic metamaterials is proposed, the effects of membrane tension, membrane size, mass and size of additional mass on the peak frequency of TL were analyzed quantitatively. The COMSOL software was used to establish a finite element analysis model and calculate the TL curve of the metamaterial at a frequency of 100-1600 Hz.
Technical Paper

Analysis of Intrinsic Characteristics and Dynamic Response of New Energy Vehicle Battery Pack System

2024-04-09
2024-01-2302
As the main power source of new energy vehicles, the durability and fatigue characteristics of the battery pack directly affect the performance of the vehicle. The battery pack system was modelled using multi-body dynamics software, with 7 and 13 degree of freedom models developed. Using the established model, the intrinsic properties of the battery pack are computationally analyzed. To calculate the dynamic characteristics, a sinusoidal displacement excitation is applied to the wheel centre of mass, and the displacement and acceleration of the battery pack centre of mass are calculated for both models.The displacement and acceleration curves at the centre of mass of the battery pack of the two models are compared. The results show that the amplitude of the displacement and acceleration curves at the centre of mass of the 13 degrees of freedom model of the battery pack has decreased significantly.
Technical Paper

Application of NVH Countermeasures for Interior Booming Noise using Elastomeric Tuned Mass Damper

2009-05-19
2009-01-2124
Tuned mass dampers (TMD) are frequently used in vehicles to resolve vibration and interior booming noise issues arising from powertrain's vibration and road excitation. This paper describes a driveshaft NVH case study in which analysis and test were used to solve the NVH problem. A TMD simulation package that utilizes a database of measured elastomeric material propertied. This facilitates the designing of optimized damper systems for a wide variety of vehicle applications. The simulation software takes into account frequency effects on elastomer properties while designing dampers. And the approach has proven to accurately predict performance in vehicles prior to manufacture. Rules of thumb for TMD design are discussed including locations for placement of dampers in automotive structures, determining the needed mass, and measurements and simulations that can greatly improve the success and reducing time-cost for TMD design.
Technical Paper

China to Explore and Set its Independent Fuel Standards – Application Research on MAZ Fuel Additive

2004-10-25
2004-01-2938
MAZ is a fuel additive designed to reduce tailpipe emissions. It was developed by Magnum Environmental Technologies, Inc., and is covered by US Patent Number 6319294. The patent for MAZ is protected in about 120 countries around the world. Its main components are a combination of nitroparaffins. MAZ exhibits high heat value, excellent carbon deposit prevention, lubricity and high chemical reactivity that results in the development of free radicals in the course of the combustion process. This, in turn, initiates a chain reaction providing more complete combustion. This results in lower tail pipe emissions and fuel economy. Further, MAZ has low water solubility, is biodegradable and contains no metallic substances making it environmentally friendly. Aside from tests currently underway in the USA, Singapore and Indonesia, China has completed applications testing with leading authorities.
Technical Paper

Control Strategy for Semi-Active Suspension Based on Suspension Parameter Estimation

2024-04-09
2024-01-2771
This paper presents an adaptive H2/H∞ control strategy for a semi-active suspension system with unknown suspension parameters. The proposed strategy takes into account the damping force characteristics of continuous damping control (CDC) damper. Initially, the external characteristics of CDC damper were measured, and a forward model and a back propagation (BP) neural network inverse model of CDC damper were proposed using the measured data. Subsequently, a seven-degree-of-freedom vehicle with semi-active suspension system and H2/H∞ controller was designed. Multiple feedback control matrices corresponding to different sprung mass parameter values were determined by analyzing time and frequency domain performance. Finally, a dual observer system combining suspension state and parameter estimation based on the Kalman filter algorithm was established.
Technical Paper

Design of Muffler in Reducing Hiss Noise of Turbocharged Vehicles

2022-03-29
2022-01-0315
The application of turbochargers in fuel vehicles brings high-frequency noise, which seriously affects the vehicle's ride comfort. The hiss noise of a turbocharged car is improved in this paper. Firstly, under different operating conditions and whether the air intake system is wrapped, the noise in the vehicle cabin and the driver's right ear is tested, and the noise sources and noise characteristics are identified. Then, the acoustic calculation model of the muffler is established, and the transmission loss (TL) of the original muffler behind the turbocharger (MBT) is calculated. The TL of the muffler is measured by the double-load impedance tube method. The finite element calculation model is verified by comparing the TL of muffler calculated with tested. Thirdly, the MBT is redesigned. The improved muffler significantly improves the performance of eliminating high-frequency noise, and its TL beyond 20 dB is expanded to the band of 1600 ~ 3500 Hz.
Technical Paper

Design of a Car Battery Box with Combined Steel Stamped and Aluminum Extruded Process

2023-04-11
2023-01-0607
In the manufacturing of battery boxes using the aluminum extruded process, poor consistency of products and a short life of the die for making aluminum structural sections are usually observed. A new method of producing battery boxes is proposed that combines steel stamped and aluminum extruded process. This paper first describes the design requirements for a battery box using a new process, and several important issues such as weld seam arrangement and error proofing in the manufacturing process are discussed. To address the issue of weld seam arrangement, the following three principles should be considered in the design: These principles include that the profile lap angle should be above 90°, three or more beams should not be lapped too closely together, and multiple brackets in close proximity should be designed as one unit.
Technical Paper

Development of Lithium-ion Battery Test Bench

2022-03-29
2022-01-0708
A test bench is proposed to be developed to measure relevant mechanics responses of lithium-ion batteries during different charge and discharge processes. It primarily consists of two parts: a mechanical structure part and a measurement and control part. The test system composed of an upper/lower battery fixing spacer and a battery is the core part of the mechanical structure part. This measurement and control part mostly contains an environmental control, an acquisition as well as a charge discharge system.
Technical Paper

Dynamic Performance Optimization of Ball Joints with Cross Groove for Automotive Driveshaft System

2024-04-09
2024-01-2438
The ball joint with cross groove offers both angular and plunging motion. When transmitting the same torque, the cross groove ball joint is lighter than other plunging Constant Velocity Joints (CVJs). It is crucial for the design of the joint and enhancing the contact fatigue life of the raceway to accurately estimate component loads of the ball joints with cross groove. In this study, the transmission efficiency of the joint and the peak value of contact force between ball and the track are used as evaluation indexes for characterizing dynamic performance of the joint. A multibody dynamic model of the joint is established to calculate its dynamic performance. In the model, the contact properties and friction characteristics of the internal structures were modeled, and a nonlinear equivalent spring and damping model was adopted for estimating the contact force. The transmission efficiency loss of the cross groove joint was measured and compared with the calculated values.
Technical Paper

Effect of Gas-Pressure Stabilizers on Performance Characteristics of a Single-Cylinder Diesel Engine

1990-02-01
900641
Experimental investigation on a high speed single-cylinder diesel engine has shown that a gas-pressure stabilizer in the exhaust system has obvious effect upon engine performance. Two types of such gas pressure stabilizers were tested, and a reduction of about 0.5% to 2% in fuel consumption rate was achieved, which was mainly dependent on the type of stabilizer employed and was more significant under higher speed conditions.
X