Refine Your Search

Topic

Search Results

Technical Paper

A Fatigue Life Prediction Method of Rubber Material for Automobile Vibration Isolator under Road Load Spectrum

2022-03-29
2022-01-0253
Automobile rubber isolator was subjected to random load cycle for a long time in the service process, and its main rubber material for vibration isolation was prone to fatigue failure. Since the traditional Miner damage theory overlooked the load randomness, it had a prediction error problem. In order to improve the prediction accuracy of rubber fatigue life, the traditional Miner damage theory was modified by random uncertainty theory to predict the rubber fatigue life under random load. Firstly, the rubber dumbbell-shaped test column, which was vulcanized from rubber materials commonly used in vibration isolators, was taken as the research object. The uniaxial fatigue test of rubber under different strain amplitudes and strain mean values was carried out. Then the fatigue characteristic curve of rubber with equivalent strain amplitude as the damage parameter was established.
Technical Paper

A Method for Acquiring and Editing the Load Spectrum of the Drive-Shaft System for an All-Terrain Vehicle

2022-03-29
2022-01-0268
The durability road test of a vehicle is an important test to verify the reliability of vehicle components. In order to carry out the durability bench test for drive shaft systems of all-terrain vehicles, a method for acquiring time domain signals of articulation angles of the CVJ, input torque, and rotational speeds of drive shaft systems is proposed. The acquired load spectrum of drive shaft systems is preprocessed including deleting small amplitudes, de-drifting, deburring, filtering, etc. Peaks and valleys are extracted from the preprocessed load spectrum. Based on the graphic method and the estimator stabilization method, the upper and lower thresholds of the time domain extrapolation of the load spectrum are determined, and then the peaks and valleys excesses that exceed the upper and lower thresholds are extracted. The generalized pareto distribution function is used to fit the distribution of peaks and valleys excesses.
Technical Paper

A Study on Editing Method of Road Load Spectrum of Automobile Rubber Isolator Using Time-Frequency Domain Methods

2022-03-29
2022-01-0272
In order to enhance the efficiency of durability testing of automobile parts, a time-frequency domain accelerated editing method of road load time series of rubber mount on powertrain was discussed. Based on Stockwell Transform method and Accumulative Power Spectral Density, a new time-frequency domain accelerated editing method (ST-APSD) was proposed. The accumulative power spectral density was obtained by ST of the load time series signal of automobile powertrain rubber mounting force which is acquired by the real vehicle in the test field. Based on the accumulative power spectral density, the threshold value was proposed to identify and delete the small damage load fragments, and then the acceleration spectrum was obtained.
Technical Paper

A Switching Control Strategy for Multiple Heating Modes Based on the Integrated Thermal Management System of Electric Vehicles

2024-04-09
2024-01-2233
To reduce the heating energy consumption of electric vehicles in winter, a switching control strategy for multiple heating modes formed by three heat sources, including air, motor waste heat, and positive temperature coefficient (PTC) heaters, is designed. Firstly, an integrated thermal management system (ITMS) simulation model for the heat pump air conditioning system, battery thermal management system, and motor thermal management system is established based on the AMESim software. Secondly, the influence of ambient temperature and motor outlet coolant temperature on the heating performance of three cabin heating modes is studied. Specifically, the three cabin heating modes include the pure motor waste heat source heat pump mode, the pure air-source heat pump mode, and the dual heat source heat pump mode with waste heat source and air source. Based on the analysis results, the opening and closing strategies for the three cabin heating modes are discussed.
Technical Paper

Analysis and optimization for generated axial force of Adjustable Angular Roller tripod joint

2024-04-09
2024-01-2887
The tripod constant velocity joint (CVJ) has been widely used in mechanical systems due to its strong load-bearing capacity, high efficiency, and reliability. It has become the most commonly used plunging-type CVJ in automotive drive-shaft. A generated axial force (GAF) with a third-order characteristic of driven shaft speed is caused by the internal friction and motion characteristics in a tripod joint. The large GAF has a negative impact on the NVH (Noise, Vibration, and Harshness) characteristics of automobiles, and this issue is particularly prominent in new energy vehicles. A multi-body dynamic model of the Adjustable Angular Roller (AAR) tripod CVJ is developed to calculate and analyze the GAF. To describe the internal motion of the AAR tripod CVJ, the contact interactions between the roller and the track or the trunnion were modeled using non-linear equivalent spring-damping models for contact collision forces and modified Coulomb friction model for friction.
Technical Paper

Analysis of Influencing Factors of Secondary Torque of Automotive Ball-Type Universal Joint

2021-04-06
2021-01-0677
During the operation of the automotive drive shaft system, the ball-type universal joint will generate a secondary torque, which will affect the torque transmission of the automotive drive shaft system and the comfort of the automobile. Under the influence of the internal friction of the ball-type universal joint, the secondary torque generates a torque component on the plane where the working angle is located and the plane perpendicular to the working angle. To effectively calculate and analyze the secondary torque, this paper establishes a multi-body dynamic model of the ball-type universal joint. At the same time, the secondary torque of the ball-type universal joint is measured by the NVH multi-function test bench, which verifies the validity of the multi-body dynamic model. In order to improve the analysis efficiency of the secondary torque, a proxy model of the secondary torque of the ball-type universal joint is established based on the multi-body dynamic model.
Technical Paper

Analysis of Intrinsic Characteristics and Dynamic Response of New Energy Vehicle Battery Pack System

2024-04-09
2024-01-2302
As the main power source of new energy vehicles, the durability and fatigue characteristics of the battery pack directly affect the performance of the vehicle. The battery pack system was modelled using multi-body dynamics software, with 7 and 13 degree of freedom models developed. Using the established model, the intrinsic properties of the battery pack are computationally analyzed. To calculate the dynamic characteristics, a sinusoidal displacement excitation is applied to the wheel centre of mass, and the displacement and acceleration of the battery pack centre of mass are calculated for both models.The displacement and acceleration curves at the centre of mass of the battery pack of the two models are compared. The results show that the amplitude of the displacement and acceleration curves at the centre of mass of the 13 degrees of freedom model of the battery pack has decreased significantly.
Technical Paper

Analysis of Low-Frequency Brake Noise for Drum Brakes on Semi-Trailers

2024-04-09
2024-01-2895
A road test on semi-trailers is carried out, and accelerations of some characteristic points on the braking system,axles,and truck body is measured,also brake pressure and noise around the support frame is acquired.The measured data was analyzed to determine the causes of the brake noise, and the mechanism of the noise of the drum brake of semi-trailers during low-speed braking was investigated. The following conclusions are obtained: (1) Brake noise of the drum brake of the semi-trailer at low-frequency is generated from vibrations of the brake shoes, axle, and body, and the vibration frequency is close to 2nd natural frequency of the axle. (2) Brake noise is generated from stick-slip motion between the brake shoes and the brake drum, where the relative motion between the brake drum and the brake shoes is changed alternately with sliding and sticking, resulting in sudden changes in acceleration and shock vibration.
Technical Paper

Calculation of Cooling Fan Blade Deformation and Aerodynamic Performance Based on Fluid-Structure Model

2023-04-11
2023-01-0815
Considering the interaction between fan blades and the surrounding air when a cooling fan rotates, the Fluid-Structure Interaction (FSI) model of the fan is established, and flow rate, static pressure, efficiency versus speed of the fan are calculated and analyzed. The aerodynamic performance of the fan is carried out, and the measured performance parameters are compared with calculated to validate the developed model. Using the established model, the performance of fans with different rotating speeds, diameters and blade installation angles is calculated. The effects of fan speed, diameter and blade installation angle on blade deformation and aerodynamic performance are studied.
Technical Paper

Design of a Car Battery Box with Combined Steel Stamped and Aluminum Extruded Process

2023-04-11
2023-01-0607
In the manufacturing of battery boxes using the aluminum extruded process, poor consistency of products and a short life of the die for making aluminum structural sections are usually observed. A new method of producing battery boxes is proposed that combines steel stamped and aluminum extruded process. This paper first describes the design requirements for a battery box using a new process, and several important issues such as weld seam arrangement and error proofing in the manufacturing process are discussed. To address the issue of weld seam arrangement, the following three principles should be considered in the design: These principles include that the profile lap angle should be above 90°, three or more beams should not be lapped too closely together, and multiple brackets in close proximity should be designed as one unit.
Technical Paper

Development of Lithium-ion Battery Test Bench

2022-03-29
2022-01-0708
A test bench is proposed to be developed to measure relevant mechanics responses of lithium-ion batteries during different charge and discharge processes. It primarily consists of two parts: a mechanical structure part and a measurement and control part. The test system composed of an upper/lower battery fixing spacer and a battery is the core part of the mechanical structure part. This measurement and control part mostly contains an environmental control, an acquisition as well as a charge discharge system.
Technical Paper

Dynamic Modeling Method of Electric Vehicle Thermal Management System Based on Improved Moving Boundary Method

2022-03-29
2022-01-0183
The thermal management system, which is used to improve driving safety and thermal comfort, is one of the most important systems in electric vehicles. In recent years, researchers have coupled the heat pump system and the battery cooling system to effectively improve the heating COP (Coefficient of Performance). Therefore an accurate dynamic model of thermal management system plays a key role in investigating system performance and optimal control strategies. In this paper, an electric vehicle thermal management system based on four-way valve heat pump system is designed. The moving boundary method is improved by considering the unsteady flow of the external fluid, and then a 13-order dynamic model of the thermal management system is established. Firstly, the control equations of evaporator, condenser and chiller are derived according to the principle of conservation, and then a dynamic model of thermal management system is established in Simulink.
Technical Paper

Effect of Magnetic Nanorefrigerant on Electric Vehicle

2017-10-08
2017-01-2222
The ever increasing popularity of electric vehicles and higher requirement on safety and comfort has led heat pump air conditioning system indispensable in electric vehicle. Many studies have shown that the addition of nano particles contributes to great improvement on thermal conductivity than that of conventional refrigerants. Therefore, the application of the magnetic nanorefrigerant in heat pump air conditioning system has massive potential to heighten the heat transfer efficiency. This paper aims at studying the magnetic nanorefrigerant comprised of the magnetic nano powder Fe3O4 and refrigerant R134a. According to the relevant theoretical analyses and empirical formula, the heat transfer coefficient, density, viscosity, and other physical parameters are calculated approximately. In the heat pump air conditioning system of a certain type of electric vehicle, the special working condition parameters are selected to carry out calculation analysis with numerical analysis software.
Technical Paper

Experimental Study on Hydraulic Pressure Feedforward and Feedback PID Control of I-EHB System with Friction Disturbance

2021-04-06
2021-01-0979
This paper designs the important components and structure of the integrated electro-hydraulic brake system (I-EHB). Firstly, the simplified linear system is modeled, and the transfer function without considering the nonlinear disturbance such as system friction is derived, and the correctness of the linear system is preliminarily verified by AMESim. Then set up the I-EHB system test bench, and use the Stribeck friction model to identify the friction torque parameters in the static and kinetic friction stages of the system to obtain a more accurate friction model. Finally, based on the I-EHB system model of friction disturbance, a pressure-speed-current three-loop cascade PID controller is designed, and a feedforward controller based on the system model is added to form the control structure of “pressure feedforward compensation + pressure-speed-current closed-loop cascade PID”.
Technical Paper

Experimental and Numerical Study of Rollover Crashworthiness of a Coach Body Section

2012-09-24
2012-01-1900
The good mobility and large carrying capacity promote the popularity of intercity coach in mass transit, especially in the long distance passenger transport nowadays. However, accidents related to coach and bus usually involve large casualties. Higher risk of fatalities is exhibited in rollover than the other coach accident types. In order to protect the occupants when a rollover accident occurs, coach structure must have sufficient strength to resist the impact loads. This paper presents a rollover test of an intercity coach body section using both numerical simulation and experimental testing to investigate its rollover crashworthiness in accordance with ECE R66. A full scale coach body section is manufactured and a tilting bench is designed and fabricated. Displacement transducers and accelerometer are equipped to record the time history of superstructure deformation and impact acceleration. And the FE model was developed accordingly.
Technical Paper

Heat Dissipation Performance Analysis of Liquid-Cooled Plate in Battery Package System

2024-04-09
2024-01-2674
A liquid-cooled plate is an important component for cooling batteries inside a battery package system. The structure of the liquid-cooling plate significantly affects the temperature conditions of power batteries and the energy consumption of the liquid-cooling system. However, there is a lack of precise knowledge regarding the specific factors that contribute to these impacts. In this study, the influence of structural parameters of flow channel on the heat dissipation performance is studied to solve above problems. A test bench for measuring battery pack cooling performances was built, and pressure drop of liquid-cooled plate and maximum temperature of battery were measured. A CFD model for liquid-cooled plate performance calculations was developed. Using the established model, pressure drop, and maximum temperature were calculated. The measured data are compared with the calculated date, which validate the proposed model.
Technical Paper

Material Parameter Identification Method for Rubber Mount Constitutive Equation

2023-05-08
2023-01-1154
As an important vibration damping element in automobile industries, the vibration transmitted from the engine to the frame can be reduced effectively because of rubber mount. The influence of preload on the static characteristics of rubber mount and the constitutive parameters identification of Mooney-Rivlin model under preload were studied. Firstly, a test rig for stiffness measurement of rubber mount under preload was designed and the influence of preload on the force versus displacement of mount was studied. Then, the model for estimating force versus displacement of rubber mount was established. The response surface model for parameters identification was established. And the identification method for estimating parameters of Mooney-Rivlin model of rubber mount was proposed with the crow search algorithm. Taking the rubber mount as the research object and taking the parameters of Mooney-Rivlin model as the variables.
Technical Paper

Mechanical Failure Modes of Prismatic Lithium-ion Battery Separator

2022-12-16
2022-01-7119
As the power of electric vehicles (EVs), lithium-ion batteries (LIBs) are subjected to a variety of mechanical loads during electrochemical operation. Under this operating environment, lithium-ion batteries are at risk of internal short circuit, thermal runaway and even fire, threatening the safety of electric vehicles. The purpose of this paper is to investigate the mechanical behaviors and failure mechanisms of the battery separator to improve the safety of lithium-ion batteries under mechanical loads. In this study, uniaxial tensile, through-thickness compression and biaxial punch tests were performed to characterize two types of separators, dry-processed polypropylene (PP) separators and wet-processed ceramic-coated separators, and to analyze and compare their mechanical properties and failure modes. The comprehensive mechanical tests show that the failure modes of the different separator types are different, with the more anisotropic separator having more complex failure modes.
Technical Paper

Modeling and Analysis for Dynamic Performances of a Two-Layer Engine Front End Accessory Drive System with an Overrunning Alternator Decoupler

2021-04-06
2021-01-0656
Two-layer engine front end accessory drive systems (TEFEADS) are adopted generally by commercial vehicles due to the characteristics of the accessory pulleys, which have large torque and moment of inertia. An overrunning alternator decoupler (OAD) is an advanced vibration isolator which can reduce the amplitude of torsional vibration of alternator rotor effectively by an one-way transmission and they are more and more widely used in vehicles. This paper established a model of a generic layout of a TEFEADS with an OAD. The coupling effect between the TEFEADS, the nonlinear characteristics of OAD, the torsional vibration of crankshaft and the creeping on the belt were taken into account. A nine pulleys model was provided as a study example, the dynamic responses, which are respectively under steady and accelerating conditions, of the system were calculated by the established method and compared with the bench experiment.
Technical Paper

Modeling and Analysis of Front End Accessory Drive System with Overrunning Alternator Decoupler

2020-04-14
2020-01-0398
The generator is an important loaded component of an engine front end accessory drive system (EFEADS). With a huge moment of inertia and a highest running speed, the vibration and noise often occurs in operation, which has an effect on the service life. Thus an overrunning alternator decoupler (OAD) is used in the EFEADS for reducing the vibration of system. In this paper, a model of EFEADS with an OAD is established. The impact of the OAD on the dynamic responses of pulley of generator and the system are analyzed, and is verified by bench experiments. And the influence of parameters, such as spring stiffness, moment of inertia of generator and loaded torque on the dynamic performances of the system are studied. The influence of misalignment in pulleys on the dynamic performance of system is also discussed. The presented method is useful for optimizing the dynamic performance of system, such as the oscillation of tensioner arm and the slip ratio of the belt-generator pulley.
X