Refine Your Search

Topic

Search Results

Technical Paper

A Fatigue Life Prediction Method of Rubber Material for Automobile Vibration Isolator under Road Load Spectrum

2022-03-29
2022-01-0253
Automobile rubber isolator was subjected to random load cycle for a long time in the service process, and its main rubber material for vibration isolation was prone to fatigue failure. Since the traditional Miner damage theory overlooked the load randomness, it had a prediction error problem. In order to improve the prediction accuracy of rubber fatigue life, the traditional Miner damage theory was modified by random uncertainty theory to predict the rubber fatigue life under random load. Firstly, the rubber dumbbell-shaped test column, which was vulcanized from rubber materials commonly used in vibration isolators, was taken as the research object. The uniaxial fatigue test of rubber under different strain amplitudes and strain mean values was carried out. Then the fatigue characteristic curve of rubber with equivalent strain amplitude as the damage parameter was established.
Technical Paper

A Method for Calculating High Frequency Dynamic Characteristics of Rubber Isolators under Different Preloads

2022-03-29
2022-01-0307
Because the power unit of electric vehicle has large torque, the rubber mount of electric vehicle is fully compressed under the condition of full throttle acceleration. When designing the mount of electric vehicle, the dynamic-to-static stiffness ratio of mount under the case should be as low as possible to improve the vibration isolation rate of the mount. In this paper, a method for calculating the high frequency dynamic characteristics of rubber isolators under different preloads is presented. Firstly, the dynamic characteristics of rubber specimens under various shear pre-strains were tested. The test results show that the dynamic stiffness of specimen decreases at first and then increases with the increase of shear strain. The viscoelastic parameters of rubber in frequency domain under different pre-strain were identified according to the experimental data. Secondly, a finite element modeling method was proposed.
Technical Paper

A Method for Identifying Tortuosity, Viscous Characteristic Length and Thermal Characteristic Length of Kapok Mixed Fiber Porous Materials

2023-05-08
2023-01-1058
Tortuosity, viscous characteristic length and thermal characteristic length are three important parameters for estimating the acoustic performance of porous materials, and it is usually measured by ultrasonic measurement technology, which is costly. In this paper, a method for identifying the tortuosity, viscous characteristic length and thermal characteristic length for the porous fiber materials mixed with kapok fiber and two kinds of other fiber materials is proposed. The tortuosity is calculated by using the porosity and high-frequency normal sound absorption coefficient of porous materials. According to the normal sound absorption coefficient curve of porous materials under plane wave incidence, viscous characteristic length and thermal characteristic length are identified through the Johnson-Champoux-Allard-Lafarge (JCAL) model and genetic algorithm by using the measured parameters, the calculated tortuosity and static thermal permeability.
Technical Paper

A Method for Predicting Fatigue Life of Rubber Isolators at Power Spectral Density Load

2024-04-09
2024-01-2261
Rubber isolators are widely used under random vibrations. In order to predict their fatigue life, a study on the fatigue analysis methodology for rubber isolators is carried out in this paper. Firstly, taking a mount used for isolating air conditioning compressor vibrations as studying example, accelerations versus time of rubber isolator at both sides are acquired for a car under different running conditions. The acceleration in time domain is transformed to frequency domain using the Fourier transform, and the acceleration power spectral density (PSD) is the obtained. Using the PSD as input, fatigue test is carried for the rubber isolator in different temperature and constant humidity conditions. A finite element model of the rubber isolator using ABAQUS is established for estimating fatigue life, and model validity is verified through static characteristic testing. Dynamic responses of the rubber isolator at frequency domain are calculated if a unit load is applied.
Technical Paper

A Novel Kind of Proportional Electromagnetic Dynamic Vibration Absorber

2019-06-05
2019-01-1586
A new proportional electromagnetic dynamic vibration absorber (EDVA) is proposed for control of engine vibration during idling. The device consists of an electromagnetic actuator attached to the primary structure through elastic element, where the driving force pair is implemented between the reaction-mass and the primary structure. The design of the proportional electromagnetic actuator is realized considering the geometric parameters of the core to achieve nearly constant magnetic force over a broad range of its dynamic displacement but proportional to square of the current. A methodology is proposed to achieve magnetic force proportional to square of current and consistent with the disturbance frequency. The proportional EDVA is subsequently applied to a single-degree-of-freedom primary system with an acceleration feedback control algorithm for attenuation of primary system vibration in a frequency band around the typical idling vibration frequencies.
Technical Paper

A Study on Editing Method of Road Load Spectrum of Automobile Rubber Isolator Using Time-Frequency Domain Methods

2022-03-29
2022-01-0272
In order to enhance the efficiency of durability testing of automobile parts, a time-frequency domain accelerated editing method of road load time series of rubber mount on powertrain was discussed. Based on Stockwell Transform method and Accumulative Power Spectral Density, a new time-frequency domain accelerated editing method (ST-APSD) was proposed. The accumulative power spectral density was obtained by ST of the load time series signal of automobile powertrain rubber mounting force which is acquired by the real vehicle in the test field. Based on the accumulative power spectral density, the threshold value was proposed to identify and delete the small damage load fragments, and then the acceleration spectrum was obtained.
Technical Paper

A Switching Control Strategy for Multiple Heating Modes Based on the Integrated Thermal Management System of Electric Vehicles

2024-04-09
2024-01-2233
To reduce the heating energy consumption of electric vehicles in winter, a switching control strategy for multiple heating modes formed by three heat sources, including air, motor waste heat, and positive temperature coefficient (PTC) heaters, is designed. Firstly, an integrated thermal management system (ITMS) simulation model for the heat pump air conditioning system, battery thermal management system, and motor thermal management system is established based on the AMESim software. Secondly, the influence of ambient temperature and motor outlet coolant temperature on the heating performance of three cabin heating modes is studied. Specifically, the three cabin heating modes include the pure motor waste heat source heat pump mode, the pure air-source heat pump mode, and the dual heat source heat pump mode with waste heat source and air source. Based on the analysis results, the opening and closing strategies for the three cabin heating modes are discussed.
Technical Paper

An Approximate Estimation Method for Transmission Loss Peak Frequency of Membrane-Type Acoustic Metamaterials

2021-04-06
2021-01-0672
Membrane-type acoustic metamaterials consist of a tensioned membrane fixed on the frame and an additional mass attached to the membrane. The sound insulation performance of membrane-type acoustic metamaterials is much better than the acoustic mass law predictions at transmission loss (TL) peak frequencies. In this paper, an equivalent mechanical model of membrane-type metamaterials is established. Through the vibration analysis of the membrane with tensile force as the main elastic restoring force, an approximate estimation method of the TL peak frequency of Membrane-type acoustic metamaterials is proposed, the effects of membrane tension, membrane size, mass and size of additional mass on the peak frequency of TL were analyzed quantitatively. The COMSOL software was used to establish a finite element analysis model and calculate the TL curve of the metamaterial at a frequency of 100-1600 Hz.
Technical Paper

Analysis of Intrinsic Characteristics and Dynamic Response of New Energy Vehicle Battery Pack System

2024-04-09
2024-01-2302
As the main power source of new energy vehicles, the durability and fatigue characteristics of the battery pack directly affect the performance of the vehicle. The battery pack system was modelled using multi-body dynamics software, with 7 and 13 degree of freedom models developed. Using the established model, the intrinsic properties of the battery pack are computationally analyzed. To calculate the dynamic characteristics, a sinusoidal displacement excitation is applied to the wheel centre of mass, and the displacement and acceleration of the battery pack centre of mass are calculated for both models.The displacement and acceleration curves at the centre of mass of the battery pack of the two models are compared. The results show that the amplitude of the displacement and acceleration curves at the centre of mass of the 13 degrees of freedom model of the battery pack has decreased significantly.
Technical Paper

Application of NVH Countermeasures for Interior Booming Noise using Elastomeric Tuned Mass Damper

2009-05-19
2009-01-2124
Tuned mass dampers (TMD) are frequently used in vehicles to resolve vibration and interior booming noise issues arising from powertrain's vibration and road excitation. This paper describes a driveshaft NVH case study in which analysis and test were used to solve the NVH problem. A TMD simulation package that utilizes a database of measured elastomeric material propertied. This facilitates the designing of optimized damper systems for a wide variety of vehicle applications. The simulation software takes into account frequency effects on elastomer properties while designing dampers. And the approach has proven to accurately predict performance in vehicles prior to manufacture. Rules of thumb for TMD design are discussed including locations for placement of dampers in automotive structures, determining the needed mass, and measurements and simulations that can greatly improve the success and reducing time-cost for TMD design.
Technical Paper

Control Strategy for Semi-Active Suspension Based on Suspension Parameter Estimation

2024-04-09
2024-01-2771
This paper presents an adaptive H2/H∞ control strategy for a semi-active suspension system with unknown suspension parameters. The proposed strategy takes into account the damping force characteristics of continuous damping control (CDC) damper. Initially, the external characteristics of CDC damper were measured, and a forward model and a back propagation (BP) neural network inverse model of CDC damper were proposed using the measured data. Subsequently, a seven-degree-of-freedom vehicle with semi-active suspension system and H2/H∞ controller was designed. Multiple feedback control matrices corresponding to different sprung mass parameter values were determined by analyzing time and frequency domain performance. Finally, a dual observer system combining suspension state and parameter estimation based on the Kalman filter algorithm was established.
Technical Paper

Design of a Car Battery Box with Combined Steel Stamped and Aluminum Extruded Process

2023-04-11
2023-01-0607
In the manufacturing of battery boxes using the aluminum extruded process, poor consistency of products and a short life of the die for making aluminum structural sections are usually observed. A new method of producing battery boxes is proposed that combines steel stamped and aluminum extruded process. This paper first describes the design requirements for a battery box using a new process, and several important issues such as weld seam arrangement and error proofing in the manufacturing process are discussed. To address the issue of weld seam arrangement, the following three principles should be considered in the design: These principles include that the profile lap angle should be above 90°, three or more beams should not be lapped too closely together, and multiple brackets in close proximity should be designed as one unit.
Technical Paper

Development of Lithium-ion Battery Test Bench

2022-03-29
2022-01-0708
A test bench is proposed to be developed to measure relevant mechanics responses of lithium-ion batteries during different charge and discharge processes. It primarily consists of two parts: a mechanical structure part and a measurement and control part. The test system composed of an upper/lower battery fixing spacer and a battery is the core part of the mechanical structure part. This measurement and control part mostly contains an environmental control, an acquisition as well as a charge discharge system.
Technical Paper

Dynamic Performance Optimization of Ball Joints with Cross Groove for Automotive Driveshaft System

2024-04-09
2024-01-2438
The ball joint with cross groove offers both angular and plunging motion. When transmitting the same torque, the cross groove ball joint is lighter than other plunging Constant Velocity Joints (CVJs). It is crucial for the design of the joint and enhancing the contact fatigue life of the raceway to accurately estimate component loads of the ball joints with cross groove. In this study, the transmission efficiency of the joint and the peak value of contact force between ball and the track are used as evaluation indexes for characterizing dynamic performance of the joint. A multibody dynamic model of the joint is established to calculate its dynamic performance. In the model, the contact properties and friction characteristics of the internal structures were modeled, and a nonlinear equivalent spring and damping model was adopted for estimating the contact force. The transmission efficiency loss of the cross groove joint was measured and compared with the calculated values.
Technical Paper

Effect of Gas-Pressure Stabilizers on Performance Characteristics of a Single-Cylinder Diesel Engine

1990-02-01
900641
Experimental investigation on a high speed single-cylinder diesel engine has shown that a gas-pressure stabilizer in the exhaust system has obvious effect upon engine performance. Two types of such gas pressure stabilizers were tested, and a reduction of about 0.5% to 2% in fuel consumption rate was achieved, which was mainly dependent on the type of stabilizer employed and was more significant under higher speed conditions.
Technical Paper

Effect of Magnetic Nanorefrigerant on Electric Vehicle

2017-10-08
2017-01-2222
The ever increasing popularity of electric vehicles and higher requirement on safety and comfort has led heat pump air conditioning system indispensable in electric vehicle. Many studies have shown that the addition of nano particles contributes to great improvement on thermal conductivity than that of conventional refrigerants. Therefore, the application of the magnetic nanorefrigerant in heat pump air conditioning system has massive potential to heighten the heat transfer efficiency. This paper aims at studying the magnetic nanorefrigerant comprised of the magnetic nano powder Fe3O4 and refrigerant R134a. According to the relevant theoretical analyses and empirical formula, the heat transfer coefficient, density, viscosity, and other physical parameters are calculated approximately. In the heat pump air conditioning system of a certain type of electric vehicle, the special working condition parameters are selected to carry out calculation analysis with numerical analysis software.
Technical Paper

Event-Triggered Adaptive Robust Control for Lateral Stability of Steer-by-Wire Vehicles with Abrupt Nonlinear Faults

2022-07-04
2022-01-5056
Because autonomous vehicles (AVs) equipped with active front steering have the features of time varying, uncertainties, high rate of fault, and high burden on the in-vehicle networks, this article studies the adaptive robust control problem for improving lateral stability in steer-by-wire (SBW) vehicles in the presence of abrupt nonlinear faults. First, an upper-level robust H∞ controller is designed to obtain the desired front-wheel steering angle for driving both the yaw rate and the sideslip angle to reach their correct values. Takagi-Sugeno (T-S) fuzzy modeling method, which has shown the extraordinary ability in coping with the issue of nonlinear, is applied to deal with the challenge of the changing longitudinal velocity. The output of the upper controller can be calculated by a parallel distributed compensation (PDC) scheme.
Technical Paper

Experiment and Analysis of Mechanical Semi-Active Hydraulic Engine Mount with Double Inertia Tracks

2022-03-29
2022-01-0305
Electromagnetic semi-active hydraulic engine mount (HEM) with double inertia tracks can realize the opening and closing of the inertia tracks through the control of electromagnetic actuator, so as to meet the needs of vibration isolation in different working conditions, but the cost is high. In this paper, without using electromagnetic actuator, a mechanical semi-active HEM with double inertia tracks is designed and manufactured with simple structure and low cost. In this study, the feature of mechanical semi-active HEM with double inertia tracks is that a baffle-current limiting column structure is added in the inertia track. Under different excitation amplitudes, the baffle-current limiting column structure can open and close the inertia track passively. Several mechanical semi-active HEM with double-inertia tracks samples and conventional inertia tracks HEM samples are manufactured and the dynamic characteristics of these samples under low frequency excitation are tested.
Technical Paper

Experimental Study on Hydraulic Pressure Feedforward and Feedback PID Control of I-EHB System with Friction Disturbance

2021-04-06
2021-01-0979
This paper designs the important components and structure of the integrated electro-hydraulic brake system (I-EHB). Firstly, the simplified linear system is modeled, and the transfer function without considering the nonlinear disturbance such as system friction is derived, and the correctness of the linear system is preliminarily verified by AMESim. Then set up the I-EHB system test bench, and use the Stribeck friction model to identify the friction torque parameters in the static and kinetic friction stages of the system to obtain a more accurate friction model. Finally, based on the I-EHB system model of friction disturbance, a pressure-speed-current three-loop cascade PID controller is designed, and a feedforward controller based on the system model is added to form the control structure of “pressure feedforward compensation + pressure-speed-current closed-loop cascade PID”.
Technical Paper

Fatigue Life Analysis Methods for Rolling Lobe Air Spring

2024-04-09
2024-01-2259
The fatigue prediction model of an air spring based on the crack initiation method is established in this study. Taking a rolling lobe air spring with an aluminum casing as the studying example, a finite element model for analyzing force versus displacement is developed. The static stiffness and dimensional parameters of limit positions are calculated and analyzed. The influence of different modeling methods of air springs bellow are compared and analyzed. Static stiffness measurement of an air spring is conducted, and the calculation results and the measured results of the static stiffness are compared. It is shown that the relative error of the measured stiffness and calculated stiffness is within 1%. The Abaqus post-processing stage is redeveloped in Python language.
X