Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A Demonstration of Dedicated EGR on a 2.0 L GDI Engine

2014-04-01
2014-01-1190
Southwest Research Institute (SwRI) converted a 2012 Buick Regal GS to use an engine with Dedicated EGR™ (D-EGR™). D-EGR is an engine concept that uses fuel reforming and high levels of recirculated exhaust gas (EGR) to achieve very high levels of thermal efficiency [1]. To accomplish reformation of the gasoline in a cost-effective, energy efficient manner, a dedicated cylinder is used for both the production of EGR and reformate. By operating the engine in this manner, many of the sources of losses from traditional reforming technology are eliminated and the engine can take full advantage of the benefits of reformate. The engine in the vehicle was modified to add the following components: the dedicated EGR loop, an additional injector for delivering extra fuel for reformation, a modified boost system that included a supercharger, high energy dual coil offset (DCO) ignition and other actuators used to enable the control of D-EGR combustion.
Technical Paper

A Dual-Use Hybrid Electric Command and Control Vehicle

2001-11-12
2001-01-2775
Until recently, U.S. government efforts to dramatically reduce emissions, greenhouse gases and vehicle fuel consumption have primarily focused on passenger car applications. Similar aggressive reductions need to be extended to heavy vehicles such as delivery trucks, buses, and motorhomes. However, the wide range of torques, speeds, and powers that such vehicles must operate under makes it difficult for any current powertrain system to provide the desired improvements in emissions and fuel economy. Hybrid electric powertrains provide the most promising, near-term technology that can satisfy these requirements. This paper highlights the configuration and benefits of a hybrid electric powertrain capable of operating in either a parallel or series mode. It describes the hybrid electric components in the system, including the electric motors, power electronics and batteries.
Journal Article

A High Efficiency, Dilute Gasoline Engine for the Heavy-Duty Market

2012-09-24
2012-01-1979
A 13 L HD diesel engine was converted to run as a flame propagation engine using the HEDGE™ Dual-Fuel concept. This concept consists of pre-mixed gasoline ignited by a small amount of diesel fuel - i.e., a diesel micropilot. Due to the large bore size and relatively high compression ratio for a pre-mixed combustion engine, high levels of cooled EGR were used to suppress knock and reduce the engine-out emissions of the oxides of nitrogen and particulates. Previous work had indicated that the boosting of high dilution engines challenges most modern turbocharging systems, so phase I of the project consisted of extensive simulation efforts to identify an EGR configuration that would allow for high levels of EGR flow along the lug curve while minimizing pumping losses and combustion instabilities from excessive backpressure. A potential solution that provided adequate BTE potential was consisted of dual loop EGR systems to simultaneously flow high pressure and low pressure loop EGR.
Technical Paper

A New Approach to Improving Fuel Economy and Performance Prediction through Coupled Thermal Systems Simulation

2002-03-04
2002-01-1208
Vehicle designers make use of vehicle performance programs such as RAPTOR™ to predict the performance of concept vehicles over ranges of industry standard drive cycles. However, the accuracy of such predictions may be greatly influenced by factors requiring more specialist simulation capabilities. For example, fuel economy prediction will be heavily influenced by the performance of the engine cooling system and its impact on the vehicle's aerodynamic drag, and the load from the air-conditioning system. To improve the predictions, specialist simulation capabilities need to be applied to these aspects, and brought together with the vehicle performance calculations through co-simulation. This paper describes the approach used to enable this cosimulation and the benefits achieved by the vehicle designer.
Technical Paper

A New Methodology for Comparing Knock Mitigation Strategies and Their Stability Margin

2023-04-11
2023-01-0248
The automotive sector is rapidly transitioning to decarbonized, electric vehicles solutions. However, due to challenges with such rapid adoption, Internal combustion engines (ICE) are expected to be used for decades to come. In this transition period it is important to continue to improve ICE efficiency. A key design parameter to increase ICE efficiency is the compression ratio. For gasoline engines, the compression ratio is limited so as to avoid knock. Engine designers can employ several strategies to mitigate knock and enable higher compression ratios. In this study, a new methodology has been developed to compare various knock mitigation strategies. By comparing the knock limited load at a given combustion phasing the expected compression ratio increase can be inferred.
Technical Paper

A Parallel Hybrid Drivetrain

1999-08-17
1999-01-2928
Next generation vehicles are under environmental and economic pressure to reduce emissions and increase fuel economy, while maintaining the same ride and performance characteristics of present day combustion engine automobiles. This has prompted researchers to investigate hybrid vehicles as one possible solution to this challenge. At Southwest Research Institute (SwRI), a unique parallel hybrid drivetrain was designed and prototyped. This hybrid drivetrain alleviates the disadvantages of series hybrid drivetrains by directly coupling the driving wheels to two power sources, namely an engine and an electric motor. At the same time, the design allows the engine speed to be decoupled from the vehicle speed, allowing the engine to operate at its most efficient state. This paper describes the drivetrain, its components, and the test stand that was assembled to test the parallel hybrid drivetrain.
Journal Article

A Study Isolating the Effect of Bore-to-Stroke Ratio on Gasoline Engine Combustion Chamber Development

2016-10-17
2016-01-2177
A unique single cylinder engine was used to assess engine performance and combustion characteristics at three different strokes, with all other variables held constant. The engine utilized a production four-valve, pentroof cylinder head with an 86mm bore. The stock piston was used, and a variable deck height design allowed three crankshafts with strokes of 86, 98, and 115mm to be tested. The compression ratio was also held constant. The engine was run with a controlled boost-to-backpressure ratio to simulate turbocharged operation, and the valve events were optimized for each operating condition using intake and exhaust cam phasers. EGR rates were swept from zero to twenty percent under low and high speed conditions, at MBT and maximum retard ignition timings. The increased stroke engines demonstrated efficiency gains under all operating conditions, as well as measurably reduced 10-to-90 percent burn durations.
Technical Paper

A Zero Trust Architecture for Automotive Networks

2024-04-09
2024-01-2793
Since the early 1990’s, commercial vehicles have suffered from repeated vulnerability exploitations that resulted in a need for improved automotive cybersecurity. This paper outlines the strategies and challenges of implementing an automotive Zero Trust Architecture (ZTA) to secure intra-vehicle networks. Zero Trust (ZT) originated as an Information Technology (IT) principle of “never trust, always verify”; it is the concept that a network must never assume assets can be trusted regardless of their ownership or network location. This research focused on drastically improving security of the cyber-physical vehicle network, with minimal performance impact measured as timing, bandwidth, and processing power. The automotive ZTA was tested using a software-in-the-loop vehicle simulation paired with resource constrained hardware that closely emulated a production vehicle network.
Technical Paper

Accessory Electrification in Class 8 Tractors

2006-04-03
2006-01-0215
Fuel costs to operate large trucks have risen substantially in the last few years and, based on petroleum supply/demand curves, that trend is expected to continue for the foreseeable future. Non-propulsion or parasitic loads in a large truck account for a significant percentage of overall engine load, leading to reductions in overall vehicle fuel economy. Electrification of parasitic loads offers a way of minimizing non-propulsion engine loads, using the full motive force of the engine for propulsion and maximizing vehicle fuel economy. This paper covers the integration and testing of electrified accessories, powered by a fuel cell auxiliary power unit (APU) in a Class 8 tractor. It is a continuation of the efforts initially published in SAE paper 2005-01-0016.
Technical Paper

Achieving Tier 2 Bin 5 Emission Levels with a Medium Duty Diesel Pick-Up and a NOX Adsorber, Diesel Particulate Filter Emissions System-Exhaust Gas Temperature Management

2004-03-08
2004-01-0584
Increasing fuel costs and the desire for reduced dependence on foreign oil has brought the diesel engine to the forefront of future medium-duty vehicle applications in the United States due to its higher thermal efficiency and superior durability. The main obstacle to the increased use of diesel engines in this platform is the upcoming extremely stringent, Tier 2 emission standard. In order to succeed, diesel vehicles must comply with emissions standards while maintaining their excellent fuel economy. The availability of technologies such as common rail fuel injection systems, low sulfur diesel fuel, NOX adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with these future requirements. In meeting the Tier 2 emissions standards, the heavy light-duty trucks (HLDTs) and medium-duty passenger vehicles (MDPVs) will face the greatest technological challenges. In support of this, the U.S.
Technical Paper

Advanced 1-D Ignition and Flame Growth Modeling for Ignition and Misfire Predictions in Spark Ignition Engines

2021-04-06
2021-01-0376
Simulating high amounts of exhaust gas recirculation in spark ignited engines to predict combustion using the currently available CFD modeling approaches is a challenge and does not always give reasonable matches with experimental observations. One of the reasons for the mismatch lies with the secondary circuit treatment of the ignition coil and the resulting energy deposition or a complete lack of it thereof. An ignition modeling approach is developed in this work which predicts the energy transfer from the electrical circuit to the gases in the combustion chamber leading to flame kernel growth under high EGR and high gas flow velocity conditions. Secondary circuit sub-model includes secondary side of the coil, spark plug and spark gap. The sub-model calculates the delivered energy to the gas based on given circuit properties and total initial electrical energy.
Journal Article

Advanced Ignition Systems Evaluations for High-Dilution SI Engines

2014-10-13
2014-01-2625
A series of ignition systems were evaluated for their suitability for high-EGR SI engine applications. Testing was performed in a constant-volume combustion chamber and in a single-cylinder research engine, with EGR rates of up to 40% evaluated. All of the evaluated systems were able to initiate combustion at a simulated 20% EGR level, but not all of the resulting combustion rates were adequate for stable engine operation. High energy spark discharge systems were better, and could ignite a flame at up to 40% simulated EGR, though again the combustion rates were slow relative to that required for stable engine performance. The most effective systems for stable combustion at high EGR rates were systems which created a large effective flame kernel and/or a long kernel lifetime, such as a torch-style prechamber spark plug or a corona discharge igniter.
Technical Paper

Advanced Test Methods Aid in Formulating Engine Oils for Fuel Economy

2016-10-17
2016-01-2269
Chassis dynamometer tests are often used to determine vehicle fuel economy (FE). Since the entire vehicle is used, these methods are generally accepted to be more representative of ‘real-world’ conditions than engine dynamometer tests or small-scale bench tests. Unfortunately, evaluating vehicle fuel economy via this means introduces significant variability that can readily be mitigated with engine dynamometer and bench tests. Recently, improvements to controls and procedures have led to drastically improved test precision in chassis dynamometer testing. Described herein are chassis dynamometer results from five fully formulated engine oils (utilizing improved testing protocols on the Federal Test Procedure (FTP-75) and Highway Fuel Economy Test (HwFET) cycles) which not only show statistically significant FE changes across viscosity grades but also meaningful FE differentiation within a viscosity grade where additive systems have been modified.
Technical Paper

An Engine Start/Stop System for Improved Fuel Economy

2007-04-16
2007-01-1777
During city traffic or heavily congested roads, a vehicle can consume a substantial amount of fuel idling when the vehicle is stopped. Due to regulation enforcement, auto manufacturers are developing systems to increase the mileage and reduce emissions. Turning off the engine at traffic lights and regenerative braking systems are simple ways to reduce emissions and fuel consumption. In order to develop strong manufacturer and consumer interest, this type of operation needs to be automated such that the stop/start functionality requires no driver interaction and takes place without the intervention of the vehicle operator. Valeo Electrical Systems has developed such a system that replaces the OEM engine alternator with a starter/alternator driven by a standard multi-ribbed V belt. To avoid a break and dual voltage network, this system is based on a 12V electrical system using an Enhanced Power Supply.
Technical Paper

An Unthrottled Gaseous Fuel Conversion of a 2-Stroke Diesel Engine

1975-02-01
750159
The feasibility of converting a conventional unthrottled 2-stroke diesel engine to gaseous fuel was investigated. The development work was performed in two phases. In phase 1 the conversion concepts were built and tested on a single-cylinder engine. In phase 2 one of these was put into effect in a 6-cyl (DDA 6V-71) engine. The design concept with the most promise includes a divided combustion chamber utilizing a gas inlet valve in each chamber and a spark plug ignition source located in the prechamber. The concept has the potential of reducing the exhaust emissions well below the levels now existing in commercial diesels without exhaust smoke and odor and with equivalent fuel consumption and horsepower, as demonstrated in the single-cylinder conversion. Further development work remains to be done to perfect the concept for the multi-cylinder engine.
Technical Paper

Analysis For A Parallel Four-Wheel Propane Electric Hybrid Vehicle

1999-08-17
1999-01-2907
This paper analyzes the hybridization of a conventionally powered light duty front wheel drive pick up truck by adding an electric motor driven rear axle. Also studied are the effects of using propane fuel instead of gasoline. This hybrid powertrain configuration can be described as a parallel hybrid electric vehicle. Supervisory power management control has been developed to best determine the proportion of load to be provided by the engine and/or electric motor. To perform these analyses, a simulation tool (computer model of the powertrain components) was developed using MATLAB/SIMULINK'. The models account for the thermal and mechanical efficiencies of the components and are designed to develop control strategies for meeting road loads with improved fuel economy and reduced emissions. Results of this study have shown that fuel economy can be improved and emissions reduced using commercially available components (motor, rear axle, and lead acid batteries).
Journal Article

Analysis Process for Truck Fuel Efficiency Study

2015-09-29
2015-01-2778
Medium- and Heavy Duty Truck fuel consumption and the resulting greenhouse gas (GHG) emissions are significant contributors to overall U.S. GHG emissions. Forecasts of medium- and heavy-duty vehicle activity and fuel use predict increased use of freight transport will result in greatly increased GHG emissions in the coming decades. As a result, the National Highway Traffic Administration (NHTSA) and the United States Environmental Protection Agency (EPA) finalized a regulation requiring reductions in medium and heavy truck fuel consumption and GHGs beginning in 2014. The agencies are now proposing new regulations that will extend into the next decade, requiring additional fuel consumption and GHG emissions reductions. To support the development of future regulations, a research project was sponsored by NHTSA to look at technologies that could be used for compliance with future regulations.
Technical Paper

Analysis of Real-World Preignition Data Using Neural Networks

2023-10-31
2023-01-1614
1Increasing adoption of downsized, boosted, spark-ignition engines has improved vehicle fuel economy, and continued improvement is desirable to reduce carbon emissions in the near-term. However, this strategy is limited by damaging preignition events which can cause hardware failure. Research to date has shed light on various contributing factors related to fuel and lubricant properties as well as calibration strategies, but the causal factors behind an individual preignition cycle remain elusive. If actionable precursors could be identified, mitigation through active control strategies would be possible. This paper uses artificial neural networks to search for identifiable precursors in the cylinder pressure data from a large real-world data set containing many preignition cycles. It is found that while follow-up preignition cycles in clusters can be readily predicted, the initial preignition cycle is not predictable based on features of the cylinder pressure.
Technical Paper

Analysis of a Hybrid Powertrain for Heavy Duty Trucks

1995-11-01
952585
Heavy duty trucks account for about 50 percent of the NOx burden in urban areas and consume about 20 percent of the national transportation fuel in the United States. There is a continuing need to reduce emissions and fuel consumption. Much of the focus of current work is on engine development as a stand-alone subsystem. While this has yielded impressive gains so far, further improvement in emissions or engine efficiency is unlikely in a cost effective manner. Consequently, an integrated approach looking at the whole powertrain is required. A computer model of the heavy duty truck system was built and evaluated. The model includes both conventional and hybrid powertrains. It uses a series of interacting sub-models for the vehicle, transmission, engine, exhaust aftertreatment and braking energy recovery/storage devices. A specified driving cycle is used to calculate the power requirements at the wheels and energy flow and inefficiencies throughout the drivetrain.
Technical Paper

Analysis of a SuperTurbocharged Downsized Engine Using 1-D CFD Simulation

2010-04-12
2010-01-1231
The VanDyne SuperTurbocharger (SuperTurbo) is a turbocharger with an integral Continuously Variable Transmission (CVT). By changing the gear ratio of the CVT, the SuperTurbo is able to either pull power from the crankshaft to provide a supercharging function, or to function as a turbo-compounder, where energy is taken from the turbine and given to the crankshaft. The SuperTurbo's supercharger function enhances the transient response of a downsized and turbocharged engine, and the turbo-compounding function offers the opportunity to extract the available exhaust energy from the turbine rather than opening a waste gate. Using 1-D simulation, it was shown that a 2.0-liter L4 could exceed the torque curve of a 3.2L V6 using a SuperTurbo, and meet the torque curve of a 4.2-liter V8 with a SuperTurbo and a fresh-air bypass configuration. In each case, the part-load efficiency while using the SuperTurbo was better than the baseline engine.
X