Refine Your Search

Topic

Author

Search Results

Technical Paper

A New Approach to Improving Fuel Economy and Performance Prediction through Coupled Thermal Systems Simulation

2002-03-04
2002-01-1208
Vehicle designers make use of vehicle performance programs such as RAPTOR™ to predict the performance of concept vehicles over ranges of industry standard drive cycles. However, the accuracy of such predictions may be greatly influenced by factors requiring more specialist simulation capabilities. For example, fuel economy prediction will be heavily influenced by the performance of the engine cooling system and its impact on the vehicle's aerodynamic drag, and the load from the air-conditioning system. To improve the predictions, specialist simulation capabilities need to be applied to these aspects, and brought together with the vehicle performance calculations through co-simulation. This paper describes the approach used to enable this cosimulation and the benefits achieved by the vehicle designer.
Technical Paper

A Next-Generation Emission Test Procedure for Small Utility Engines - Part 1, Background and Approach

1990-09-01
901595
Measurement of emissions from small utility engines has usually been accomplished using steady-state raw emissions procedures such as SAE Recommended Practice J1088. While raw exhaust measurements have the advantage of producing modal exhaust gas concentration data for design feedback; they are laborious, may influence both engine performance and the emissions themselves, and have no provision for concurrent particulate measurements. It is time to consider a full-dilution procedure similar in principle to automotive and heavy-duty on-highway emission measurement practice, leading to improvements in many of the areas noted above, and generally to much higher confidence in data obtained. When certification and audit of small engine emissions become a reality, a brief dilute exhaust procedure generating only the necessary data will be a tremendous advantage to both manufacturers and regulatory agencies.
Technical Paper

A Performance Comparison of Various Automatic Transmission Pumping Systems

1996-02-01
960424
The pumping system used in a step ratio automatic transmission can consume up to 20% of the total power required to operate a typical automotive transmission through the EPA city cycle. As such, it represents an area manufacturers have focused their efforts towards in their quest to obtain improved transmission efficiency. This paper will discuss the history of automatic transmission pumps that develop up to 300 psi along with a description of the factors used to size pumps and establish pump flow requirements. The various types of pumps used in current automatic transmissions will be described with a discussion of their characteristics including a comparison based upon observations of their performance. Specific attention will be focused on comparing the volumetric efficiency, mechanical efficiency, overall efficiency, pumping torque and discharge flow.
Journal Article

Automated Driving Impediments

2016-09-27
2016-01-8007
Since the turn of the millennium, automated vehicle technology has matured at an exponential rate, evolving from research largely funded and motivated by military and agricultural needs to a near-production market focused on everyday driving on public roads. Research and development has been conducted by a variety of entities ranging from universities to automotive manufacturers to technology firms demonstrating capabilities in both highway and urban environments. While this technology continues to show promise, corner cases, or situations outside the average driving environment, have emerged highlighting scenarios that impede the realization of full automation anywhere, anytime. This paper will review several of these corner cases and research deficiencies that need to be addressed for automated driving systems to be broadly deployed and trusted.
Technical Paper

Cetane Number Prediction from Proton-Type Distribution and Relative Hydrogen Population

1986-10-01
861521
A theoretical model for predicting cetane number of primary reference fuels from parameters measurable by proton nuclear magnetic resonance is presented. This modeling technique is expanded to include secondary reference fuels, pure hydrocarbons, and commercial-type fuels. An evaluation of the ignition process indicated that not only hydrogen type distribution measurable by proton NMR, but also relative hydrogen population is important in predicting cetane number. Two mathematical models are developed. One predicts cetane number of saturate fuels and the second predicts cetane number of fuels containing aromatic components. The aromatic fuel model is tested using the ASTM Diesel Check Fuels and shown to predict within the standard error of the model.
Technical Paper

Characterization of Particle Size Distribution of a Heavy-Duty Diesel Engine During FTP Transient Cycle Using ELPI

2000-06-19
2000-01-2001
Particle number concentrations and size distributions were measured for the diluted exhaust of a 1991 diesel engine during the US FTP transient cycle for heavy-duty diesel engines. The engine was operated on US 2-D on-highway diesel fuel. The particle measurement system consisted of a full flow dilution tunnel as the primary dilution stage, an air ejector pump as the secondary dilution stage, and an electrical low pressure impactor (ELPI) for particle size distribution measurements. Particle number emission rate was the highest during the Los Angeles Non Freeway (LANF) and the Los Angeles Freeway (LAF) segments of the transient cycle. However, on brake specific number basis the LAF had the lowest emission level. The particle size distribution was monomodal in shape with a mode between 0.084 μm and 0.14 μm. The shape of the size distribution suggested no presence of nanoparticles below the lower detection limit of the instrument (0.032 μm), except during engine idle.
Technical Paper

Cold-Start Hydrocarbon Collection for Advanced Exhaust Emission Control

1992-02-01
920847
This paper describes the findings of a laboratory effort to demonstrate improved automotive exhaust emission control with a cold-start hydrocarbon collection system. The emission control strategy developed in this study incorporated a zeolite molecular sieve in the exhaust system to collect cold-start hydrocarbons for subsequent release to an active catalytic converter. A prototype emission control system was designed and tested on a gasoline-fueled vehicle. Continuous raw exhaust emission measurements upstream and downstream of the zeolite molecular sieve revealed collection, storage, and release of cold-start hydrocarbons. Federal Test Procedure (FTP) emission results show a 35 percent reduction in hydrocarbons emitted during the cold-transient segment (Bag 1) due to adsorption by the zeolite.
Technical Paper

Comparison Between Real-Life Dust Samples and Standardized Test Dusts

1994-03-01
940322
Soil samples were collected from various geographical areas in the United States and Saudi Arabia. The samples were obtained from U.S. military installations at which off-road maneuvers are conducted. Saudi Arabia samples were obtained from the deserts surrounding Riyadh. The samples were characterized using particle size distributions, elemental analysis, mineral composition and particle angularity. Particle size distributions were determined for simulated fuel cells with intermittent and continual mixing. The results obtained from the world-wide soil sample analyses were compared against AC and PTI SAE fine and coarse test dust results.
Technical Paper

Container Deformation Procedure for Ceramic Monolith Catalytic Converters

2000-03-06
2000-01-0217
A typical automotive catalytic converter is constructed with a ceramic substrate and a steel shell. Due to a mismatch in coefficients of thermal expansion, the steel shell will expand away from the ceramic substrate at high temperatures. The gap between the substrate and shell is usually filled with a fiber composite material referred to as “mat.” Mat materials are compressed during assembly and must maintain an adequate pressure around the substrate under extreme temperature conditions. The container deformation measurement procedure is used to determine catalytic converter shell expansion during and after a period of hot catalytic converter operation. This procedure is useful in determining the potential physical durability of a catalytic converter system, and involves measuring converter shell expansion as a function of inlet temperature. A post-test dimensional measurement is used to determine permanent container deformation.
Technical Paper

DAAAC Protocol for Durability Demonstration of Diesel Aftertreatment Systems: Emissions Performance Validation

2022-08-30
2022-01-1015
Aftertreatment durability demonstration is a required validation exercise for on-road medium and heavy-duty diesel engine certification. The demonstration is meant to validate emissions compliance for the engine and aftertreatment system at full useful life or FUL. Current certification practices allow engine manufacturers to complete partial aging and then extrapolate emissions performance results to FUL. While this process reduces the amount of service accumulation time, it does not consider changes in the aftertreatment deterioration rate. Rather, deterioration is assumed to occur at a linear rate, which may lead to false conclusions relating to emissions compliance. With CARB and EPA’s commitment to the reduction of criteria emissions, emphasis has also been placed on revising the existing certification practices. The updated practices would require engine manufacturers to certify with an aftertreatment system aged to FUL.
Journal Article

Design and Implementation of a D-EGR® Mixer for Improved Dilution and Reformate Distribution

2017-03-28
2017-01-0647
The Dedicated EGR (D-EGR®) engine has shown improved efficiency and emissions while minimizing the challenges of traditional cooled EGR. The concept combines the benefits of cooled EGR with additional improvements resulting from in-cylinder fuel reformation. The fuel reformation takes place in the dedicated cylinder, which is also responsible for producing the diluents for the engine (EGR). The D-EGR system does present its own set of challenges. Because only one out of four cylinders is providing all of the dilution and reformate for the engine, there are three “missing” EGR pulses and problems with EGR distribution to all 4 cylinders exist. In testing, distribution problems were realized which led to poor engine operation. To address these spatial and temporal mixing challenges, a distribution mixer was developed and tested which improved cylinder-to-cylinder and cycle-to-cycle variation of EGR rate through improved EGR distribution.
Technical Paper

Determination of Wear Index to Predict Fuel Filtration Performance

1999-03-01
1999-01-0003
The Beta ratio and filtration ratio are two common rating systems used to designate the abrasive filtration efficiency of fuel filters. Previous research developed a series of wear curves to predict the effects of abrasive particles of varying sizes on fuel injector performance. Based on this data, a formula was generated to predict injector wear based on the number of 5-, 10-, and 15-μm particles in the effluent. This value is called the wear index. (1,2)1 Various fuel filters with the same manufacturer rating were evaluated on a test engine to determine the wear index for each of these fuel filters. The results demonstrate the differences between these “similar” fuel filters and how the wear index provides additional information as compared to Beta and filtration ratios.
Journal Article

Development of Steady State NO2:NOX Control via an Independent Nitric Decomposition System for the Exhaust Composition Transient Operation Laboratory

2022-03-29
2022-01-0548
Southwest Research Institute (SwRI) utilizes the burner-based Exhaust Composition Transient Operation LaboratoryTM (ECTO-Lab) to accurately simulate transient engines and replicate real exhaust that is produced by light and heavy-duty engines for aftertreatment aging and evaluations. This system can generate and dose NOX over transient cycles from a range of 20 ppm to 1200 ppm where the NOX is generated by the in-situ decomposition and combustion of a fuel-bound, nitrogen containing compound. During the combustion and decomposition of the nitrogen containing compound over 95 % of the NOX generated is in the form of NO. To authentically simulate exhaust gases, it is necessary to account for the distribution of the NO to the NO2. Since previous work has established that the decomposition of nitric acid can be utilized as a method to generate NO2, the objective of this project was to develop control of NO and NO2 within SwRI’s ECTO-Lab through the decomposition of nitric acid.
Technical Paper

Development of a Belt CVT Fluid Test Procedure Using the VT20/25E Belt Box for the DEX-CVT® Specification

2002-10-21
2002-01-2819
The introduction of the continuously variable transmission (CVT) by General Motors required the introduction of a test to evaluate fluid for the ECOTEC VTi transmission. With assistance from Van Doorne's Transmissie (VDT), the belt and sheave supplier for the transmission, a rig was constructed to test fluids in a transmission-like environment without the variability of in-vehicle testing. The test schedule includes testing for fluid friction coefficient, shear stability, and wear rating and is currently subject to further work aimed at confirming repeatability and discrimination. Once confirmed, the new procedure will become part of the DEX-CVT® specification for the new service fluids for the VT20/25E transmissions.
Technical Paper

Development of a Hybrid-Electric Medium-HD Demonstrator Vehicle with a Pent-Roof SI Natural Gas Engine

2024-06-12
2024-37-0026
In response to global climate change, there is a widespread push to reduce carbon emissions in the transportation sector. For the difficult to decarbonize heavy-duty (HD) vehicle sector, lower carbon intensity fuels can offer a low-cost, near-term solution for CO2 reduction. The use of natural gas can provide such an alternative for HD vehicles while the increasing availability of renewable natural gas affords the opportunity for much deeper reductions in net-CO2 emissions. With this in consideration, the US National Renewable Energy Laboratory launched the Natural Gas Vehicle Research and Development Project to stimulate advancements in technology and availability of natural gas vehicles. As part of this program, Southwest Research Institute developed a hybrid-electric medium-HD vehicle (class 6) to demonstrate a substantial CO2 reduction over the baseline diesel vehicle and ultra-low NOx emissions.
Technical Paper

EHC Impact on Extended Hot Soak Periods

1995-10-01
952418
Emission performance of a late model vehicle equipped with an electrically-heated catalytic converter (EHC) system was evaluated after extended vehicle soak periods that ranged from 30 to 180 minutes. As soak periods lengthened, NMHC and CO emissions measured in hot transient driving cycles increased by 125 percent and 345 percent, respectively. These tests were baseline operations which had no resistance heating or secondary air injection to the converter system. Sources of increased NMHC and CO emissions as a function of vehicle soak time were both the converter system cool-down characteristics and engine restart calibration strategy. For soak periods of 30 and 60 minutes, EHC resistance heating without secondary air injection resulted in large improvements in NMHC and CO emission performance (i.e., 74 percent and 54 percent lower NMHC emissions versus no heat, no air operation after a 30- and 60-minute period, respectively).
Technical Paper

Effect of Gas Composition on Octane Number of Natural Gas Fuels

1992-10-01
922359
The composition of natural gas delivered through the pipeline varies with time and location around the USA. These variations are known to affect engine performance and emissions through changes in fuel metering characteristics and knock resistance of the fuel. High output, low emissions natural gas engines are being developed that take advantage of the high knock resistance of natural gas. These optimized engines are operated close to knock-limited power where changes in fuel knock resistance can cause operational problems. Octane tests were conducted on natural gas blend fuels using a CFR octane rating engine. Two relationships between motor octane number and fuel composition were established. A correlation for motor octane number versus the reactive hydrogen-carbon ratio was developed, and octane weighting factors, which used the molar composition of the fuel to predict motor octane number, were also found.
Technical Paper

Effect of Phased Air/Fuel Ratio Perturbation and Catalyst O2 Storage Capability on Catalyst Conversion Efficiency

2000-10-16
2000-01-2924
Recent internal research performed at SwRI examined an emissions control mechanism that we have labeled, ‘phased A/F perturbation.’ The suggested mechanism of phased perturbation involves independently controlling the fuel delivered to each bank of a dual bank engine, which allows the two banks to have an adjustable, relative A/F perturbation phase-shift from one another. Exhaust from the two banks can be combined to achieve a near-stoichiometric mixture prior to entering a single underbody catalyst. Since both rich and lean exhaust species would be present simultaneously, a highly reactive mixture would continuously enter the catalyst. In that work, it was found that A/F phasing produced as significant an effect on conversion efficiency as perturbation amplitude and frequency, i.e. A/F phasing was identified as a third dimension for optimization of exhaust gas composition as it enters the catalyst.
Technical Paper

Effects of Different Injector Hole Shapes on Diesel Sprays

1992-02-01
920623
Twelve different hole shapes for diesel injector tips were characterized with DF-2 diesel fuel for spray cone angle over a range of injection pressures from 21 MPa (3 kpsi) to 69 MPa (10 kpsi). A baseline and two of the most radical designs were also tested for drop-size distribution and liquid volume fraction (liquid fuel-air ratio) over a range of pressures from 41 MPa (6 kpsi) to 103 MPa (15 kpsi). All hole shapes were circular in cross-section with minimum diameters of 0.4 mm (0.016 in.), and included converging and diverging hole shapes. Overall hole lengths were constant at 2.5 mm (0.098 in.), for an L/d of 6.2. However, the effective L/d may have been less for some of the convergent and divergent shapes.
Technical Paper

Electrified Heavy-Duty 4-cylinder Engine Concept for Class 8 Trucks

2021-04-06
2021-01-0719
Current industry trends in both powertrain electrification and vehicle drag reduction point towards reduced peak and average power demands from the internal combustion engine in future long-haul class 8 vehicles. Downsizing the engine displacement to match these new performance requirements can yield a benefit in drive cycle efficiency through reduced friction and improved cruise load efficiency. Downsizing by reducing cylinder count avoids the heat loss and friction penalties from reduced per-cylinder displacement and could allow a manufacturer to continue to leverage the highly optimized combustion system from existing heavy-duty engines in the new downsized offering. The concept of this study is to leverage powertrain electrification and the improvement trends in vehicle aerodynamics and rolling resistance to develop a fuel economy focused, downsized heavy duty diesel powertrain for future long-haul vehicles utilizing a reduced cylinder count.
X