Refine Your Search

Topic

Author

Search Results

Journal Article

A Comparative Study of Lithium-Ion Cathode Chemistry Correlations with Emissions Initiated by Nail Penetration Abuse in the Presence of an Immersive Coolant

2022-03-29
2022-01-0707
Internal short-circuit in cells/batteries is a phenomenon where there is direct electrical contact between the positive and negative electrodes leading to thermal runaway. The nail penetration tests were used to simulate an internal short circuit within the battery, where a conductive nail was used to pierce the battery cell separator membrane which provided direct electrical contact between the positive and negative electrodes. The batteries tested during this work were common batteries used in existing automotive applications, and they included a nickel manganese cobalt (NMC) battery from a Chevrolet Bolt, a lithium manganese oxide (LMO) battery from a Chevrolet Volt, and a lithium iron phosphate (LFP) battery in a hybrid transit bus. The battery abuse and emissions tests were designed to intentionally drive the three different battery chemistries into thermal runaway while measuring battery temperatures, battery voltages and gaseous emissions.
Journal Article

A Comparative Study of Lithium-Ion Cathode Chemistry Correlations with Emissions Initiated by Nail Penetration Abuse in the Presence of an Immersive Coolant

2022-03-29
2022-01-0715
Internal short-circuit in cells/batteries is a phenomenon where there is direct electrical contact between the positive and negative electrodes leading to thermal runaway. The nail penetration tests were used to simulate an internal short circuit within the battery, where a conductive nail was used to pierce the battery cell separator membrane which provided direct electrical contact between the positive and negative electrodes. The batteries tested during this work were common batteries used in existing automotive applications, and they included a nickel manganese cobalt (NMC) battery from a Chevrolet Bolt, a lithium manganese oxide (LMO) battery from a Chevrolet Volt, and a lithium iron phosphate (LFP) battery in a hybrid transit bus. The battery abuse and emissions tests were designed to intentionally drive the three different battery chemistries into thermal runaway while measuring battery temperatures, battery voltages and gaseous emissions.
Technical Paper

A Second Generation Expert System for Diagnosis and Repair of Mechanical and Electrical Devices

1986-03-01
860337
Existing expert systems have a high percentage agreement with human experts in a particular field in many situations. However, in many ways their overall behavior is not like that of a human expert. These areas include the inability to give flexible, functional explanations of their reasoning processes and the failure to degrade gracefully when dealing with problems at the periphery of their knowledge. These two important shortcomings can be improved when the right knowledge is available to the system. This paper presents an expert system design, called the Integrated Diagnostic Model (IDM), that integrates two sources of knowledge: a shallow, empirically-oriented, experiential knowledge base and a deep, functionally-oriented, physical knowledge base. To demonstrate the IDM's usefulness in the problem area of diagnosis and repair of electrical and mechanical devices, two implementations and our experience with them is described.
Technical Paper

Advanced Nondestructive Testing Methods for Bearing Inspection

1972-02-01
720172
The principles of the magnetic-perturbation method of flaw detection and the Barkhausen noise residual stress measurement method are briefly reviewed. It is suggested that they provide very powerful tools for assuring improved ball bearing performance. The methods are applied for the evaluation of ball bearing races. Typical experimental results are presented along with metallurgical sectioning correlation.
Technical Paper

Combined Fuel and Lubricant Effects on Low Speed Pre-Ignition

2018-09-10
2018-01-1669
Many studies on low speed pre-ignition have been published to investigate the impact of fuel properties and of lubricant properties. Fuels with high aromatic content or higher distillation temperatures have been shown to increase LSPI activity. The results have also shown that oil additives such as calcium sulfonate tend to increase the occurrence of LSPI while others such as magnesium sulfonate tend to decrease the occurrence. Very few studies have varied the fuel and oil properties at the same time. This approach is useful in isolating only the impact of the oil or the fuel, but both fluids impact the LSPI behavior of the engine simultaneously. To understand how the lubricant and fuel impacts on LSPI interact, a series of LSPI tests were performed with a matrix which combined fuels and lubricants with a range of LSPI activity. This study was intended to determine if a low activity lubricant could suppress the increased LSPI from a high activity fuel, and vice versa.
Technical Paper

Compatibility of Elastomers and Metals in Biodiesel Fuel Blends

1997-05-01
971690
Alternative fuels are being evaluated in automotive applications in both commercial and government fleets in an effort to reduce emissions and United States dependence on diesel fuel. Vehicles and equipment have been operated using 100 percent biodiesel and various blends of biodiesel and diesel fuel in a variety of applications, including farming equipment and transit buses. This government study investigates the compatibility of four base fuels and six blends with elastomer and metallic components commonly found in fuel systems. The physical properties of the elastomers were measured according to American Society of Testing and Materials (ASTM) D 471, “Standard Test Method for Rubber Property-Effect of Liquids,” and ASTM D 412, “Standard Test Methods for Rubber Properties in Tension.” These evaluations were performed at 51.7°C for 0, 22, 70, and 694 hours. Tensile strength, hardness, swell, and elongation were determined for all specimens.
Technical Paper

Container Deformation Procedure for Ceramic Monolith Catalytic Converters

2000-03-06
2000-01-0217
A typical automotive catalytic converter is constructed with a ceramic substrate and a steel shell. Due to a mismatch in coefficients of thermal expansion, the steel shell will expand away from the ceramic substrate at high temperatures. The gap between the substrate and shell is usually filled with a fiber composite material referred to as “mat.” Mat materials are compressed during assembly and must maintain an adequate pressure around the substrate under extreme temperature conditions. The container deformation measurement procedure is used to determine catalytic converter shell expansion during and after a period of hot catalytic converter operation. This procedure is useful in determining the potential physical durability of a catalytic converter system, and involves measuring converter shell expansion as a function of inlet temperature. A post-test dimensional measurement is used to determine permanent container deformation.
Technical Paper

Continuous Oil Consumption Measurement Using Laser Induced Breakdown Spectroscopy

2022-03-29
2022-01-0581
This paper describes a new method for measuring oil consumption using laser induced breakdown spectroscopy (LIBS). LIBS focuses a high energy laser pulse on a sample to form a transient plasma. As the plasma cools, each element produces atomic emission lines which can be used to identify and quantify the elements present in the original sample. In this work, a LIBS system was used on simulated engine exhaust with a focus on quantifying the inorganic components (termed ash) of the particulate emissions. Because some of the metallic elements in the ash almost exclusively result from lube oil consumption, their concentrations can also be correlated to an oil consumption rate. Initial testing was performed using SwRI’s Exhaust Composition Transient Operation Laboratory®(ECTO-Lab®) burner system so that oil consumption and ash mass could be precisely controlled.
Technical Paper

Development of Improved Arctic Engine Oil (OEA-30)

1999-05-03
1999-01-1523
U.S. Army arctic engine oil, MIL-L-46167B, designated OEA, provides excellent low-temperature operation and is multi functional. It is suitable for crankcase lubrication of reciprocating internal combustion engines and for power-transmission fluid applications in ground equipment. However, this product required 22-percent derated conditions in the two-cycle diesel engine qualifications test. Overall, OEA oil was limited to a maximum ambient temperature use of 5°C for crankcase applications. The technical feasibility of developing an improved, multi functional arctic engine oil for U.S. military ground mobility equipment was investigated. The concept was proven feasible, and the new oil, designated as OEA-30, has exceptional two-cycle diesel engine performance at full engine output and can be operated beyond the 5°C maximum ambient temperature limit of the MIL-L-46167B product.
Technical Paper

Development of a Lean-NOx Catalyst Containing Metal-Ligand Complex Impregnated Molecular Sieves

1996-10-01
962050
This paper describes the development and evaluation of an operative catalyst for the reduction of NOx in lean exhaust. A catalyst that incorporates iron (II)-complex impregnated modified mesoporous molecular sieves (MCM-41) has been synthesized and further treated with [pd(NH3)4]Cl2 [1]. Experimental results suggest a hydrocarbon-independent reduction of NOx takes place on the iron center, and oxidation of CO is assisted by the palladium ion. The catalytic activity toward HC CO, and NOx removal was studied with simulated and real engine exhaust in the laboratory and on an engine, respectively. Engine test results demonstrate a reduction of NOx of up to 10 percent at catalyst inlet temperatures in the range of 260°C to 280°C. In this paper, possible NOx reduction pathways are also discussed.
Technical Paper

Development of a Piston Temperature Telemetry System

1992-02-01
920232
The measurement of piston temperature in a reciprocating engine has historically been a very time-consuming and expensive process. Several conditions exist in an engine that measurement equipment must be protected against. Acceleration forces near 2000 G's occur at TDC in automotive engines at rated speed. Operating temperatures inside the crankcase can range to near 150°C. To allow complete mapping of piston temperature, several measuring locations are required in the piston and data must be obtained at various engine operating conditions. Southwest Research Institute (SwRI) has developed a telemetry-based system that withstands the harsh environments mentioned above. The device is attached to the underside of a piston and temperature data is transmitted to a receiving antenna in the engine crankcase. The key element of this device is a tiny power generator which utilizes the reciprocating motion of the piston to generate electricity thus allowing the transmitter to be self-powered.
Technical Paper

Development of an In-Situ Diagnostic to Detect Lithium Plating in Commercial Automotive Battery Cells

2021-04-06
2021-01-0749
Lithium plating refers to the phenomenon where lithium metal is deposited onto the surface of the anode instead of being intercalated into the carbon sites of the graphite. The lithium metal will cover a portion of the surface area of the anode, which blocks intercalation sites and increases charge gradients. Lithium plating most often occurs when charging the battery at low ambient temperatures or at a high current rate, but lithium plating formation has also been linked to solid electrolyte interface (SEI) growth towards the later stages of life. Lithium plating may significantly reduce a battery cell’s performance in terms of charge capacity, and if severe enough, the lithium metal may form a bridge across the separator of the cell, leading to short circuits and potential safety concerns. The internal research performed by Southwest Research Institute explored how to create a battery model to detect the formation of lithium plating in real time.
Technical Paper

Diagnostics of Diesel Engines Using Exhaust Smoke and Temperature

1976-02-01
760833
An experimental sensor array that measures dynamic exhaust temperature and dynamic smoke for the purpose of diagnosing diesel engine fuel injection equipment was designed, built, and tested. The sensor array is portable and easily installed on truck tailpipes, and was tested using two 6V-53 Detroit Diesel engines. The dynamic temperature sensor is a very high response instrument capable of measuring changes in gas temperature in excess of 104°F/second. The dynamic smokemeter is an optical device designed to measure very low levels of light opacity in the smoke plume, with a response compatible with the engine firing frequency. Dynamic exhaust temperature data had more diagnostic significance than dynamic smoke in the detection of maximum power degrading fuel injection faults.
Technical Paper

Diesel Fuel Lubricity

1995-02-01
950248
The United States and Europe are mandating increasingly severe diesel fuel specifications, particularly with respect to sulfur content, and in some areas, aromatics content. This trend is directed towards reducing vehicle exhaust emissions and is generally beneficial to fuel quality, ignition ratings, and stability. However, laboratory studies, as well as recent field experience in Sweden and the United States, indicate a possible reduction in the ability of fuels to lubricate sliding components within the fuel injection system. These factors, combined with the trend toward increasing injection pressure in modern engine design, are likely to result in reduced durability and failure of the equipment to meet long-term emissions compliance. The U.S. Army Belvoir Fuels and Lubricants Research Facility (BFLRF) located at Southwest Research Institute (SwRI) developed an accelerated wear test that predicts the effects of fuel lubricity on injection system durability.
Technical Paper

Dual Fuel Combustion of Propane in a Railroad Diesel Engine

1963-01-01
630450
Fuel conservationists will welcome this practicable proposal for converting railroads from diesel fuel to propane gas propulsion. Propane is no newcomer to the fuel family, but the advantages of economy, simplicity of operation, minimal maintenance, and extended life of equipment, as presented in this paper, show up its unexploited and extensive potential use in all mobile units. This careful study includes experimental results and data especially applied to railroad engines, even to conversion plans for existing engines that allows an interchangeable fuel system to accommodate present supply and variable cost factors in the United States.
Technical Paper

Effect of Low-Lubricity Fuels on Diesel Injection Pumps - Part I: Field Performance

1992-02-01
920823
The U.S. Department of Defense has adopted a concept in which a single fuel will be used on the battlefield; diesel fuel will be replaced by JP-8/JP-5/Jet A-1 in compression ignition engines, thereby decreasing the fuel logistics burden. JP-8 fuel has successfully undergone extensive testing in both the laboratory and in field trials. However, increased failure rates for fuel-lubricated rotary injection pump components operating on Jet A-1 aviation turbine fuel were reported during Operation Desert Shield. This paper is the first of two and describes the disassembly and failure analysis of twelve rotary fuel injection pumps that operated on Jet A-1. Also disassembled as a baseline for comparison were three additional pumps from civilian vehicles that had operated on commercial diesel. Each of the pumps had a unique service history, making quantitative comparison difficult.
Technical Paper

Effects of Exhaust Gas Recirculation on the Degradation Rates of Lubricating Oil in a Heavy-Duty Diesel Engine

1999-10-25
1999-01-3574
The specific goal of this project was to determine if there is a difference in the lube oil degradation rates in a heavy-duty diesel engine equipped with an EGR system, as compared to the same configuration of the engine, but minus the EGR system. A secondary goal was to develop FTIR analysis of used lube oil as a sensitive technique for rapid evaluation of the degradation properties of lubricants. The test engine selected for this work was a Caterpillar 3176 engine. Two engine configurations were used, a standard 1994 design and a 1994 configuration with EGR designed to meet the 2004 emissions standards. The most significant changes in the lubricant occurred during the first 50-100 hours of operation. The results clearly demonstrated that the use of EGR has a significant impact on the degradation of the engine lubricant.
Technical Paper

Emissions from Trucks by Chassis Version of 1983 Transient Procedure

1980-10-01
801371
Regulated gaseous, particulate and several unregulated emissions are reported from four heavy-duty diesel engines operated on the chassis version of the 1983 transient procedure. Emissions were obtained from Caterpillar 3208, Mack ENDT 676, Cummins Formula 290 and Detroit Diesel 8V-71 engines with several diesel fuels. A large dilution tunnel (57′ × 46″ ID) was fabricated to allow total exhaust dilution, rather than the double dilution employed in the stationary engine version of the transient procedure. A modal particulate sampler was developed to obtain particulate data from the individual segments of the 1983 transient procedure. The exhaust gas was analyzed for benzo(a)pyrene, metals, N2O, NO2, individual hydrocarbons and HCN. Sequential extractions were performed and measured versus calculated fuel consumptions were obtained.
Technical Paper

Evaluation of Hydraulic Efficiency Using High-Shear Viscosity Fluids

2010-10-25
2010-01-2178
Fossil fuel consumption is a significant factor in terms of both economic and environ-mental impact of on- and off-highway systems. Because fuel consumption can be directly tied to equipment efficiency, gains in efficiency can lead to reduction in operating costs as well as conservation of nonrenewable resources. Fluid performance has a direct effect on the efficiency of a hydraulic system. A procedure has been developed for measuring a fluid's effect on the degree to which mechanical power is efficiently converted to hydraulic power in pumps typical of off-highway applications.
Technical Paper

Evaluation of Possible Methanol Fuel Additives for Reducing Engine Wear and/or Corrosion

1990-10-01
902153
The use of fuel additives is one possible approach to reduce wear and corrosion in methanol fueled automobile engines. One hundred and six compounds added to M100 fuel in modest concentrations (1%) were tested in a Ball on Cylinder Machine (BOCM) for their ability to improve lubricity. The most promising candidates were then tested in an engine using a modified ASTM Sequence V-D wear screening test. Additive performance was measured by comparing the buildup of wear metals in the oil to that obtained from an engine fueled with neat M100. The BOCM method of evaluating the additive candidates proved inadequate in predicting abrasive engine wear under the test conditions utilized for this research program.
X