Refine Your Search

Topic

Author

Search Results

Technical Paper

A New Method of Measuring Aeration and Deaeration of Fluids

2004-10-25
2004-01-2914
This paper describes the design and functionality of an in-situ air entrainment measuring device for analysis of the air entrainment and air release properties of lubricating fluids. The apparatus allows for a variety of measurement techniques for the aeration and deaeration of the lubricating fluid at various temperatures, pressures, and agitation speeds. This test apparatus is patent pending because of its unique ability to allow for continuous, in-situ measurement of the fluid properties and the rates of change of these properties. Most other measurement techniques and apparatuses do not allow for uninterrupted measurement. This apparatus is also unique in that it is capable of detecting minor fluid density changes at a lower level and with more accuracy than all other current techniques or apparatuses.
Technical Paper

A Parallel Hybrid Drivetrain

1999-08-17
1999-01-2928
Next generation vehicles are under environmental and economic pressure to reduce emissions and increase fuel economy, while maintaining the same ride and performance characteristics of present day combustion engine automobiles. This has prompted researchers to investigate hybrid vehicles as one possible solution to this challenge. At Southwest Research Institute (SwRI), a unique parallel hybrid drivetrain was designed and prototyped. This hybrid drivetrain alleviates the disadvantages of series hybrid drivetrains by directly coupling the driving wheels to two power sources, namely an engine and an electric motor. At the same time, the design allows the engine speed to be decoupled from the vehicle speed, allowing the engine to operate at its most efficient state. This paper describes the drivetrain, its components, and the test stand that was assembled to test the parallel hybrid drivetrain.
Technical Paper

Advanced Performance of Metallic Converter Systems Demonstrated on a Production V8 Engine

2002-03-04
2002-01-0347
It has been shown within the catalyst industry that the emission performance with higher cell density technology and therefore with higher specific geometric area is improved. The focus of this study was to compare the overall performance of high cell density catalysts, up to 1600cpsi, using a MY 2001 production vehicle with a 4.7ltr.V8 engine. The substrates were configured to be on the edge of the design capability. The goal was to develop cost optimized systems with similar emission and back pressure performance, which meet physical and production requirements. This paper will present the results of a preliminary computer simulation study and the final emission testing of a production vehicle. For the pre-evaluation a numerical simulation model was used to compare the light-off performance of different substrate designs in the cold start portion of the FTP test cycle.
Technical Paper

Air-Assisted Direct Injection Diesel Investigations

2013-04-08
2013-01-0907
Enhancement of fuel/air mixing is one path towards enabling future diesel engines to increase efficiency and control emissions. Air-assist fuel injections have shown potential for low pressure applications and the current work aims to extend air-assist feasibility understanding to high pressure environments. Analyses were completed and carried out for traditional high pressure fuel-only, internal air-assist, and external air-assist fuel/air mixing processes. A combination of analytical 0-D theory and 3D CFD were used to help understand the processes and guide the design of the air-assisted setup. The internal air-assisted setup was determined to have excellent liquid fuel vaporization, but poorer fuel dispersion than the traditional high-pressure fuel injections.
Technical Paper

Characteristics of a Small Engine Equipped with an Electromagnetic Valve Actuation System

1998-08-11
981908
An electromagnetic valve actuation (EVA) system was developed and applied to a Kohler Command Series engine. Engine development and testing was conducted for the purpose of evaluating the performance of the EVA-equipped engine, running on natural gas, in an engine-test laboratory environment. As part of this effort, a personal computer-based engine control system, which managed the fueling, ignition, throttling, and intake/exhaust valve control functions, was developed. The evaluation included an investigation into increasing engine power output and full load efficiency, as well as increased part load efficiency. Techniques including optimized valve events as a function of operating condition, and throttleless operation using early and late intake valve closing are presented. Engine simulation results are compared with actual engine data and presented in this paper.
Technical Paper

Characterization of Particle Size Distribution of a Heavy-Duty Diesel Engine During FTP Transient Cycle Using ELPI

2000-06-19
2000-01-2001
Particle number concentrations and size distributions were measured for the diluted exhaust of a 1991 diesel engine during the US FTP transient cycle for heavy-duty diesel engines. The engine was operated on US 2-D on-highway diesel fuel. The particle measurement system consisted of a full flow dilution tunnel as the primary dilution stage, an air ejector pump as the secondary dilution stage, and an electrical low pressure impactor (ELPI) for particle size distribution measurements. Particle number emission rate was the highest during the Los Angeles Non Freeway (LANF) and the Los Angeles Freeway (LAF) segments of the transient cycle. However, on brake specific number basis the LAF had the lowest emission level. The particle size distribution was monomodal in shape with a mode between 0.084 μm and 0.14 μm. The shape of the size distribution suggested no presence of nanoparticles below the lower detection limit of the instrument (0.032 μm), except during engine idle.
Technical Paper

Container Deformation Procedure for Ceramic Monolith Catalytic Converters

2000-03-06
2000-01-0217
A typical automotive catalytic converter is constructed with a ceramic substrate and a steel shell. Due to a mismatch in coefficients of thermal expansion, the steel shell will expand away from the ceramic substrate at high temperatures. The gap between the substrate and shell is usually filled with a fiber composite material referred to as “mat.” Mat materials are compressed during assembly and must maintain an adequate pressure around the substrate under extreme temperature conditions. The container deformation measurement procedure is used to determine catalytic converter shell expansion during and after a period of hot catalytic converter operation. This procedure is useful in determining the potential physical durability of a catalytic converter system, and involves measuring converter shell expansion as a function of inlet temperature. A post-test dimensional measurement is used to determine permanent container deformation.
Technical Paper

Design Improvements of an Automatic Tire Inflation System for Long Haul Trucks

1995-11-01
952591
An Automatic Tire Inflation System (ATIS), specifically designed for use on commercial long haul trailers underwent complete testing and evaluation in 1993/1994.1 Testing and evaluation included a field test of a prototype system and a controlled laboratory evaluation of the Rotary Union which is the only component subject to wear. The testing of the prototype system indicated that design improvements were necessary before the system could be installed in fleet operations. The design improvements were completed and field installation of production ATIS began. The design improvements were intended to improve overall system durability, decrease installation time, to have less effect on the axle structure than the original design, implement the use of SAE or DOT Approved pressure components and increase overall dependability of the system. ATIS systems have now been developed and tested for most domestic trailer axle configurations.
Technical Paper

Design of an Emergency Tire Inflation System for Long Haul Trucks

1995-11-01
952592
An Emergency Tire Inflation System (ETIS) designed for use on commercial trucks was evaluated and tested. The ETIS is provided in kit form and designed to be installed by a truck operator to provide emergency air to inflate a low or punctured tire on tractor drive axles. The ETIS will continue to supply air to the tire until the system pressure falls below a safe air pressure level. The system is designed to allow the rig to be driven 500 miles to a tire repair station or to a safe location where tire repair service is available. The installation kit (Figure 1), which can fit under a truck seat, includes all the necessary equipment to install the system on the most common drive axles. The ETIS supplies air to the under-inflated tire through a previously qualified1 Rotary Union design. The Rotary Union is attached to the axle flange of the drive axle by a threaded adapter and two adjustable links that allow the Rotary Union to be placed at the center of rotation of the axle.
Journal Article

Determination of the PEMS Measurement Allowance for PM Emissions Regulated Under the Heavy-Duty Diesel Engine In-Use Testing Program

2012-04-16
2012-01-1250
This paper summarizes the Heavy-Duty In-Use Testing (HDUIT) measurement allowance program for Particulate Matter Portable Emissions Measurement Systems (PM-PEMS). The measurement allowance program was designed to determine the incremental error between PM measurements using the laboratory constant volume sampler (CVS) filter method and in-use testing with a PEMS. Two independent PM-PEMS that included the Sensors Portable Particulate Measuring Device (PPMD) and the Horiba Transient Particulate Matter (TRPM) were used in this program. An additional instrument that included the AVL Micro Soot Sensor (MSS) was used in conjunction with the Sensors PPMD to be considered a PM-PEMS. A series of steady state and transient tests were performed in a 40 CFR Part 1065 compliant engine dynamometer test cell using a 2007 on-highway heavy-duty diesel engine to quantify the accuracy and precision of the PEMS in comparison with the CVS filter-based method.
Technical Paper

Development and Application of Advanced Control Techniques to Heavy-Duty Natural Gas Engines

1996-10-01
961984
Advancements in natural gas engine control technology can result in natural gas engines which are more efficient, powerful, responsive, and durable than those currently available. The vast majority of hardware required to make these advancements exists or can be modified for application on natural gas engines. Given this, an investigation to develop and incorporate advanced natural gas engine control technology was completed. Advanced control techniques for equivalence ratio control, knock detection and control, misfire detection and control, and turbocharger transient surge supression are detailed in this paper. Control strategies were developed and applied to a heavy-duty on-highway natural gas engine using a personal computer-based prototyping control system. The engine control system advancements resulted in a natural gas engine with increased efficiency, power density, and response, along with reduced emissions over the current state-of-the-art in natural gas engines.
Technical Paper

Development of Automated Driveability Rating System

2023-04-11
2023-01-0427
Trained human raters have been used by organizations such as the Coordinating Research Council (CRC) to assess the vehicle driveability performance effect of fuel volatility. CRC conducts workshops to test fuel effects and their impact on vehicle driveability. CRC commissioned Southwest Research Institute (SwRI) to develop a “Trick Car” vehicle that could trigger malfunctions on-demand that mimic driveability events. This vehicle has been used to train novice personnel on the CRC Driveability Procedure E-28-94. While largely effective, even well-trained human raters can be inconsistent with other raters. Further, CRC rater workshop programs used to train and calibrate raters are infrequent, and there are a limited number of available trained raters. The goal of this program was to augment or substitute human raters with an electronic driveability sensing system.
Technical Paper

Development of a Novel Device to Improve Urea Evaporation, Mixing and Distribution to Enhance SCR Performance

2010-04-12
2010-01-1185
A novel urea evaporation and mixing device has been developed to improve the overall performance of a urea-SCR system. The device was tested with a MY2007 Cummins ISB 6.7L diesel engine equipped with an SCR aftertreatment system. Test results show that the device effectively improved the overall NO conversion efficiency of the SCR catalyst over both steady-state and transient engine operating conditions, while NH₃ slip from the catalyst decreased.
Technical Paper

Development of a Novel Dynamically Loaded Journal Bearing Test Rig

2021-09-21
2021-01-1218
In this work, a dynamically loaded hydrodynamic journal bearing test rig is developed and introduced. The rig is a novel design, using a hydraulic actuator with fast acting spool valves to apply load to a connecting rod. This force is transmitted through the connecting rod to the large end bearing which is mounted on a spinning shaft. The hydraulic actuator allows for fully variable control and can be used to apply either static load in compression or tension, or dynamic loading to simulate engine operation. A variable speed electric motor controls shaft speed and is synchronized to the hydraulic actuator to accurately simulate loading to represent all four engine strokes. A high precision torque meter enables direct measurements of friction torque, while shaft position is measured via a high precision encoder.
Technical Paper

Diesel Fuel Lubricity

1995-02-01
950248
The United States and Europe are mandating increasingly severe diesel fuel specifications, particularly with respect to sulfur content, and in some areas, aromatics content. This trend is directed towards reducing vehicle exhaust emissions and is generally beneficial to fuel quality, ignition ratings, and stability. However, laboratory studies, as well as recent field experience in Sweden and the United States, indicate a possible reduction in the ability of fuels to lubricate sliding components within the fuel injection system. These factors, combined with the trend toward increasing injection pressure in modern engine design, are likely to result in reduced durability and failure of the equipment to meet long-term emissions compliance. The U.S. Army Belvoir Fuels and Lubricants Research Facility (BFLRF) located at Southwest Research Institute (SwRI) developed an accelerated wear test that predicts the effects of fuel lubricity on injection system durability.
Technical Paper

Effect of Reduced Boost Air Temperature on Knock Limited Brake Mean Effective Pressure (BMEP)

2001-09-24
2001-01-3682
The effect of low temperature intake air on the knock limited brake mean effective pressure (BMEP) in a spark ignited natural gas engine is described in this paper. This work was conducted to demonstrate the feasibility of using the vaporization of liquefied natural gas (LNG) to reduce the intake air temperature of engines operating on LNG fuel. The effect on steady-state emissions and transient response are also reported. Three different intake air temperatures were tested and evaluated as to their impact upon engine performance and gaseous emissions output. The results of these tests are as follows. The reduced intake air temperature allowed for a 30.7% (501 kPa) increase in the knock-limited BMEP (comparing the 10°C (50°F) intake air results with the 54.4°C (130°F) results). Exhaust emissions were recorded at constant BMEP for varying intake air temperatures.
Technical Paper

Effects of Different Injector Hole Shapes on Diesel Sprays

1992-02-01
920623
Twelve different hole shapes for diesel injector tips were characterized with DF-2 diesel fuel for spray cone angle over a range of injection pressures from 21 MPa (3 kpsi) to 69 MPa (10 kpsi). A baseline and two of the most radical designs were also tested for drop-size distribution and liquid volume fraction (liquid fuel-air ratio) over a range of pressures from 41 MPa (6 kpsi) to 103 MPa (15 kpsi). All hole shapes were circular in cross-section with minimum diameters of 0.4 mm (0.016 in.), and included converging and diverging hole shapes. Overall hole lengths were constant at 2.5 mm (0.098 in.), for an L/d of 6.2. However, the effective L/d may have been less for some of the convergent and divergent shapes.
Technical Paper

Effects of High Temperature and Pressure on Fuel Lubricated Wear

2001-09-24
2001-01-3523
While standardized laboratory-scale wear tests are available to predict the lubricity of liquid fuels under ambient conditions, the reality is that many injection systems operate at elevated temperatures where fuel vaporization is too excessive to perform the measure satisfactorily. The present paper describes a High Pressure High Frequency Reciprocating Rig (HPHFRR) purposely designed to evaluate fuel lubricity in a pressurized environment at temperatures of up to 300°C. The remaining test parameters are identical to those of the widely standardized High Frequency Reciprocating Rig (HFRR). Results obtained using the HPHFRR indicate that wear rate with poor lubricity fuels is strongly sensitive to both temperature and oxygen partial pressure and may be orders of magnitude higher than at ambient conditions. Surprisingly however, wear rate was found to decrease dramatically at temperatures above 100°C, possibly due to evaporation of dissolved moisture.
Technical Paper

Effects of Increased Altitude on Heavy-Duty Diesel Engine Emissions

1994-03-01
940669
Concern over emissions from heavy-duty diesel engines at high altitudes prompted an investigation into the effects of increasing altitude on gaseous and particulate emissions. On behalf of the Engine Manufacturers Association, emissions from a Detroit Diesel Corporation Series 60 at local test conditions (barometer 98.9 kPa), and two simulated altitudes, Denver (82.6 kPa) and Mexico City (77.9 kPa) were examined using a special altitude simulation CVS. Transient torque output and full load steady-state torque, for this turbocharged aftercooled engine, decreased slightly with increasing altitude. Although, the DDC Series 60 compensates for variation in barometer, transient composite emissions of HC, CO, CO2, smoke, and particulate matter generally increased with increasing altitude for both transient and steady-state operation.
Technical Paper

Emissions Measurements in a Steady Combusting Spray Simulating the Diesel Combustion Chamber

1992-02-01
920185
In-cylinder control of particulate emissions in a diesel engine depends on careful control and understanding of the fuel injection and air/fuel mixing process. It is extremely difficult to measure physical parameters of the injection and mixing process in an operating engine, but it is possible to simulate some diesel combustion chamber conditions in a steady flow configuration whose characteristics can be more easily probed. This program created a steady flow environment in which air-flow and injection sprays were characterized under non-combusting conditions, and emissions measurements were made under combusting conditions. A limited test matrix was completed in which the following observations were made. Grid-generated air turbulence decreased particulates, CO, and unburned hydrocarbons, while CO2 and NOx levels were increased. The turbulence accelerated combustion, resulting in more complete combustion and higher temperatures at the measurement location.
X