Refine Your Search

Topic

Search Results

Technical Paper

A Bench Test Facility for Engine Muffler Evaluation

1963-01-01
630283
The problem associated with laboratory evaluation of muffler acoustical characteristics are complicated both by the acoustical considerations involved in obtaining an adequate noise source and by the ambiguities involved in defining what constitutes quality in a muffler built for general application. In order to quantitatively define the characteristics of quality mufflers, an extensive series of field tests were conducted on a variety of sizes and types of mufflers in conjunction with four engine configurations. Work then turned to the development of a wide band siren noise source and acoustical test system which would simulate the high impedance character of an engine exhaust noise source, and in addition generate the necessary intensity and spectral characteristics required to obtain test data over the range of noise conditions encountered in the field.
Technical Paper

A Multi-Variable Experimental Study of Diesel Geartrain Rattle

2011-05-17
2011-01-1561
Geartrain noise can be a significant contribution to the overall sound level of diesel engines. Some engine manufacturers employ isolation solutions such as sound deadening covers and foam panels to combat the problem, but these add cost. Little has been published on geartrain noise reduction, and public standards for diesel geartrain design and development are not available. This paper describes an experimental study of the relative influence of gear design parameters on the rattle noise of a diesel engine timing geartrain. The geartrains of several diesel engines were benchmarked to determine the noise reduction strategies employed. A total of three gear sets were designed and tested in a 3.3L four cylinder normally aspirated diesel engine. The experimentation quantified the influence of an anti backlash idler gear in reducing gear rattle noise, and revealed that a key path for gear rattle noise transmission is through an idler gear journal bearing shaft.
Technical Paper

A Second Generation Expert System for Diagnosis and Repair of Mechanical and Electrical Devices

1986-03-01
860337
Existing expert systems have a high percentage agreement with human experts in a particular field in many situations. However, in many ways their overall behavior is not like that of a human expert. These areas include the inability to give flexible, functional explanations of their reasoning processes and the failure to degrade gracefully when dealing with problems at the periphery of their knowledge. These two important shortcomings can be improved when the right knowledge is available to the system. This paper presents an expert system design, called the Integrated Diagnostic Model (IDM), that integrates two sources of knowledge: a shallow, empirically-oriented, experiential knowledge base and a deep, functionally-oriented, physical knowledge base. To demonstrate the IDM's usefulness in the problem area of diagnosis and repair of electrical and mechanical devices, two implementations and our experience with them is described.
Technical Paper

Advanced Nondestructive Testing Methods for Bearing Inspection

1972-02-01
720172
The principles of the magnetic-perturbation method of flaw detection and the Barkhausen noise residual stress measurement method are briefly reviewed. It is suggested that they provide very powerful tools for assuring improved ball bearing performance. The methods are applied for the evaluation of ball bearing races. Typical experimental results are presented along with metallurgical sectioning correlation.
Technical Paper

Cam/Roller Component Fatigue Reliability Analysis

1995-02-01
950708
Life prediction and reliability analysis of a cam roller system were investigated. From the tribological analysis, the cam roller system was found to operate under low film parameter conditions and components were subjected to the risk of contact fatigue. Surface analysis performed on the failed rollers indicated that the surface distress was the primary cause for failure. Then, numerical analyses were performed to evaluate the cam roller life and its related reliability. The adopted approach combined a contact fatigue crack growth calculations with a probabilistic model for controlling the design uncertainty. The computation-efficient Fast Probabilistic Integration (FPI™) code was used to solve the problem. With appropriate descriptions for uncertainty distributions, the surface fatigue life of the specified cam roller system can be predicted along with a confident reliability level.
Technical Paper

Catalytic Converter Mat Material Durability Measurement Under Controlled Thermal and Vibration Environments

2000-03-06
2000-01-0221
To aid in the catalytic converter design and development process, a test apparatus was designed and built which will allow comparative evaluation of the durability of candidate mat materials under highly controlled thermal and vibration environments. The apparatus directly controls relative shear deflection between the substrate and can to impose known levels of mat material strain while recording the transmitted shear force across the mat material. Substrate and can temperatures are controlled at constant levels using a resistive thermal exposure (RTE) technique. Mat material fatigue after several million cycles is evident by a substantial decrease in the transmitted force. A fragility test was found to be an excellent method to quickly compare candidate materials to be used for a specific application. Examples of test results from several materials are given to show the utility of the mat material evaluation technique.
Technical Paper

Catalytic Converter Vibration Measurement Under Dynamometer Simulated Roadloads

2000-03-06
2000-01-0029
In order to further reduce vehicle cold-start emissions, the use of catalytic converters that are “close-coupled” to the exhaust manifold is increasing. To understand the vibrational environment of close-coupled and underbody converters, a laboratory study was conducted on several passenger vehicles. Catalytic converter vibration spectra were measured on a chassis dynamometer with the vehicle operating over a variety of test conditions. Vehicle operating conditions included hard accelerations and extended steady-state speeds at distinct throttle positions over zero-percent and four-percent simulated road grades.
Technical Paper

Combined Fuel and Lubricant Effects on Low Speed Pre-Ignition

2018-09-10
2018-01-1669
Many studies on low speed pre-ignition have been published to investigate the impact of fuel properties and of lubricant properties. Fuels with high aromatic content or higher distillation temperatures have been shown to increase LSPI activity. The results have also shown that oil additives such as calcium sulfonate tend to increase the occurrence of LSPI while others such as magnesium sulfonate tend to decrease the occurrence. Very few studies have varied the fuel and oil properties at the same time. This approach is useful in isolating only the impact of the oil or the fuel, but both fluids impact the LSPI behavior of the engine simultaneously. To understand how the lubricant and fuel impacts on LSPI interact, a series of LSPI tests were performed with a matrix which combined fuels and lubricants with a range of LSPI activity. This study was intended to determine if a low activity lubricant could suppress the increased LSPI from a high activity fuel, and vice versa.
Technical Paper

Development of Improved Arctic Engine Oil (OEA-30)

1999-05-03
1999-01-1523
U.S. Army arctic engine oil, MIL-L-46167B, designated OEA, provides excellent low-temperature operation and is multi functional. It is suitable for crankcase lubrication of reciprocating internal combustion engines and for power-transmission fluid applications in ground equipment. However, this product required 22-percent derated conditions in the two-cycle diesel engine qualifications test. Overall, OEA oil was limited to a maximum ambient temperature use of 5°C for crankcase applications. The technical feasibility of developing an improved, multi functional arctic engine oil for U.S. military ground mobility equipment was investigated. The concept was proven feasible, and the new oil, designated as OEA-30, has exceptional two-cycle diesel engine performance at full engine output and can be operated beyond the 5°C maximum ambient temperature limit of the MIL-L-46167B product.
Technical Paper

Development of a Piston Temperature Telemetry System

1992-02-01
920232
The measurement of piston temperature in a reciprocating engine has historically been a very time-consuming and expensive process. Several conditions exist in an engine that measurement equipment must be protected against. Acceleration forces near 2000 G's occur at TDC in automotive engines at rated speed. Operating temperatures inside the crankcase can range to near 150°C. To allow complete mapping of piston temperature, several measuring locations are required in the piston and data must be obtained at various engine operating conditions. Southwest Research Institute (SwRI) has developed a telemetry-based system that withstands the harsh environments mentioned above. The device is attached to the underside of a piston and temperature data is transmitted to a receiving antenna in the engine crankcase. The key element of this device is a tiny power generator which utilizes the reciprocating motion of the piston to generate electricity thus allowing the transmitter to be self-powered.
Technical Paper

Diagnostics of Diesel Engines Using Exhaust Smoke and Temperature

1976-02-01
760833
An experimental sensor array that measures dynamic exhaust temperature and dynamic smoke for the purpose of diagnosing diesel engine fuel injection equipment was designed, built, and tested. The sensor array is portable and easily installed on truck tailpipes, and was tested using two 6V-53 Detroit Diesel engines. The dynamic temperature sensor is a very high response instrument capable of measuring changes in gas temperature in excess of 104°F/second. The dynamic smokemeter is an optical device designed to measure very low levels of light opacity in the smoke plume, with a response compatible with the engine firing frequency. Dynamic exhaust temperature data had more diagnostic significance than dynamic smoke in the detection of maximum power degrading fuel injection faults.
Technical Paper

Diesel Combustion Mode Switching - A Substantial NVH Challenge

2009-05-19
2009-01-2080
Tier 2, bin 5 diesel engines may use multiple combustion modes to achieve stringent emissions requirements. Unfortunately, switching between different combustion modes can cause step changes in noise that will be unacceptable to consumers. In this paper, several sound quality metrics are evaluated for their ability to quantify the NVH issues that arise during a rich pulse event. In addition, techniques are presented that allow an engine developer to reduce the NVH effects caused by changing combustion modes. Careful calibration tuning in close cooperation with performance and emissions development engineers is required to solve noise problems that arise from combustion mode switching events, since an NVH improvement may often come at the expense of a performance or emissions issue.
Training / Education

Diesel Engine Noise Control Web Course RePlay

Anytime
This web course provides an in-depth overview of diesel engine noise including combustion and mechanical noise sources. In addition, the instructor will discuss a system approach to automotive integration including combining sub-systems and components to achieve overall vehicle noise and vibration goals.
Technical Paper

Diesel Fuel Lubricity

1995-02-01
950248
The United States and Europe are mandating increasingly severe diesel fuel specifications, particularly with respect to sulfur content, and in some areas, aromatics content. This trend is directed towards reducing vehicle exhaust emissions and is generally beneficial to fuel quality, ignition ratings, and stability. However, laboratory studies, as well as recent field experience in Sweden and the United States, indicate a possible reduction in the ability of fuels to lubricate sliding components within the fuel injection system. These factors, combined with the trend toward increasing injection pressure in modern engine design, are likely to result in reduced durability and failure of the equipment to meet long-term emissions compliance. The U.S. Army Belvoir Fuels and Lubricants Research Facility (BFLRF) located at Southwest Research Institute (SwRI) developed an accelerated wear test that predicts the effects of fuel lubricity on injection system durability.
Technical Paper

Dual Fuel Combustion of Propane in a Railroad Diesel Engine

1963-01-01
630450
Fuel conservationists will welcome this practicable proposal for converting railroads from diesel fuel to propane gas propulsion. Propane is no newcomer to the fuel family, but the advantages of economy, simplicity of operation, minimal maintenance, and extended life of equipment, as presented in this paper, show up its unexploited and extensive potential use in all mobile units. This careful study includes experimental results and data especially applied to railroad engines, even to conversion plans for existing engines that allows an interchangeable fuel system to accommodate present supply and variable cost factors in the United States.
Technical Paper

Electromagnetic Compatibility in the Off-Highway Vehicle Part III: Electromagnetic Emissions (EME)

1992-09-01
921654
Electromagnetic emissions (EME) from vehicles and their effect on broadcast radio and television were studied as early as 1944. Their original effect was significantly reduced by the early 1960s. Today, ignition noise (broadband) and vehicular micro-processor-controlled system noise (narrowband) are interfering with Land Mobile (two-way) communication services and other devices such as computers. Two SAE test methods, J551 and J1816, are used to measure this EME. Under development are methods to measure conducted EME on vehicle signal wiring and power input leads. This paper discusses EME measurement methods, provides insight into the sources of EME problems, and gives information on the test instrumentation used to make these measurements. This paper is the third in a series of papers on electromagnetic compatibility (EMC) in the off-highway vehicle. The first paper was an overview of a complete EMC program with discussion of several important segments.
Technical Paper

Evaluation of Hydraulic Efficiency Using High-Shear Viscosity Fluids

2010-10-25
2010-01-2178
Fossil fuel consumption is a significant factor in terms of both economic and environ-mental impact of on- and off-highway systems. Because fuel consumption can be directly tied to equipment efficiency, gains in efficiency can lead to reduction in operating costs as well as conservation of nonrenewable resources. Fluid performance has a direct effect on the efficiency of a hydraulic system. A procedure has been developed for measuring a fluid's effect on the degree to which mechanical power is efficiently converted to hydraulic power in pumps typical of off-highway applications.
Technical Paper

Interior Noise Source/Path Identification Technology

2000-05-09
2000-01-1709
Excessive interior noise and vibration in propeller driven general aviation aircraft can result in poor pilot communications with ground control personnel and passengers, and, during extended flights, can lead to pilot and passenger fatigue. Noise source/path identification technology applicable to single engine propeller driven aircraft were employed to identify interior noise sources originating from structure-borne engine/propeller vibration, airborne propeller transmission, airborne engine exhaust noise, and engine case radiation. The approach taken was first to conduct a Principal Value Analysis (PVA) of an in-flight noise and vibration database acquired on a single engine aircraft to obtain a correlated data set as viewed by a fixed set of cabin microphones.
Technical Paper

Noise Benchmarking of the Detroit Diesel DD15 Engine

2011-05-17
2011-01-1566
Several new or significantly upgraded heavy duty truck engines are being introduced in the North American market. One important aspect of these new or revised engines is their noise characteristics. This paper describes the noise related characteristics of the new DD15 engine, and compares them to other competitive heavy truck engines. DD15 engine features relevant to noise include a rear gear train, isolated oil pan and valve cover, and an amplified high pressure common rail fuel system. The transition between non-amplified and amplified common rail operation is shown to have a significant noise impact, not unlike the transition between pilot injection and single shot injection in some other engines.
Technical Paper

Noise Reduction Techniques as They Apply to Engine-Generator Design and Treatment

1969-02-01
690755
Small engines may require soundproofing to eliminate one or more of the following effects: hearing loss, speech interference, community annoyance, detectability, and psychological disorientation. Detectability criteria are frequently associated with military applications and may require the use of a soundproof enclosure in addition to other engine treatments. Acoustical noise sources are conveniently classed as either aerodynamic or mechanical. Aerodynamic sources are predominant on small engines. Treatment of exhaust noise by individual components, e.g., muffler, is inadequate; a system approach, through the use of an electro-acoustic analog computer, has proved to be a much more satisfactory procedure.
X