Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

1000-Hour Durability Evaluation of a Prototype 2007 Diesel Engine with Aftertreatment Using B20 Biodiesel Fuel

2009-11-02
2009-01-2803
A prototype 2007 ISL Cummins diesel engine equipped with a diesel oxidation catalyst (DOC), diesel particle filter (DPF), variable geometry turbocharger (VGT), and cooled exhaust gas recirculation (EGR) was tested at Southwest Research Institute (SwRI) under a high-load accelerated durability cycle for 1000 hours with B20 soy-based biodiesel blends and ultra-low sulfur diesel (ULSD) fuel to determine the impact of B20 on engine durability, performance, emissions, and fuel consumption. At the completion of the 1000-hour test, a thorough engine teardown evaluation of the overhead, power transfer, cylinder, cooling, lube, air handling, gaskets, aftertreatment, and fuel system parts was performed. The engine operated successfully with no biodiesel-related failures. Results indicate that engine performance was essentially the same when tested at 125 and 1000 hours of accumulated durability operation.
Technical Paper

A Bench Technique for Evaluating High Temperature Oxidation and Corrosion Tendencies of Automotive Crankcase Lubricants

1968-02-01
680538
A technique for evaluating high temperature oxidation and corrosion tendencies of automotive crankcase lubricants is described. The technique utilizes a versatile bench apparatus which, with a minimum of modification, can be used for either evaluating thermal oxidation stability of gear lubricants or oxidation-corrosion tendencies of automotive crankcase lubricants. The apparatus is relatively compact and requires a minimal lubricant sample. Design of the apparatus permits close control of all operating parameters and provides satisfactory test data repeatability. Retainable copper-lead test bearings are used as the indicator in predicting a pass or fail of fully formulated crankcase lubricants as in the case of the CRC L-38-559 (Federal Test Method 3405) technique. Engine and bench test data are compared to illustrate the capabilities of this new bench technique.
Technical Paper

A Bench Test Facility for Engine Muffler Evaluation

1963-01-01
630283
The problem associated with laboratory evaluation of muffler acoustical characteristics are complicated both by the acoustical considerations involved in obtaining an adequate noise source and by the ambiguities involved in defining what constitutes quality in a muffler built for general application. In order to quantitatively define the characteristics of quality mufflers, an extensive series of field tests were conducted on a variety of sizes and types of mufflers in conjunction with four engine configurations. Work then turned to the development of a wide band siren noise source and acoustical test system which would simulate the high impedance character of an engine exhaust noise source, and in addition generate the necessary intensity and spectral characteristics required to obtain test data over the range of noise conditions encountered in the field.
Journal Article

A Continuous Discharge Ignition System for EGR Limit Extension in SI Engines

2011-04-12
2011-01-0661
A novel continuous inductive discharge ignition system has been developed that allows for variable duration ignition events in SI engines. The system uses a dual-coil design, where two coils are connected by a diode, combined with the multi-striking coil concept, to generate a continuous current flow through the spark plug. The current level and duration can be regulated by controlling the number of re-strikes that each coil performs or the energy density the primary coils are charged to. Compared to other extended duration systems, this system allows for fairly high current levels during the entire discharge event while avoiding the extremely high discharge levels associated with other, shorter duration, high energy ignition systems (e.g. the plasma jet [ 1 , 2 ], railplug [ 3 ] or laser ignition systems [ 4 , 5 , 6 , 7 , 8 ].
Technical Paper

A Controls Overview on Achieving Ultra-Low NOx

2020-04-14
2020-01-1404
The California Air Resources Board (CARB)-funded Stage 3 Heavy-Duty Low NOX program focusses on evaluating different engine and after-treatment technologies to achieve 0.02g/bhp-hr of NOX emission over certification cycles. This paper highlights the controls architecture of the engine and after-treatment systems and discusses the effects of various strategies implemented and tested in an engine test cell over various heavy-duty drive cycles. A Cylinder De-Activation (CDA) system enabled engine was integrated with an advanced after-treatment controller and system package. Southwest Research Institute (SwRI) had implemented a model-based controller for the Selective Catalytic Reduction (SCR) system in the CARB Stage 1 Low-NOX program. The chemical kinetics for the model-based controller were further tuned and implemented in order to accurately represent the reactions for the catalysts used in this program.
Journal Article

A Demonstration of Dedicated EGR on a 2.0 L GDI Engine

2014-04-01
2014-01-1190
Southwest Research Institute (SwRI) converted a 2012 Buick Regal GS to use an engine with Dedicated EGR™ (D-EGR™). D-EGR is an engine concept that uses fuel reforming and high levels of recirculated exhaust gas (EGR) to achieve very high levels of thermal efficiency [1]. To accomplish reformation of the gasoline in a cost-effective, energy efficient manner, a dedicated cylinder is used for both the production of EGR and reformate. By operating the engine in this manner, many of the sources of losses from traditional reforming technology are eliminated and the engine can take full advantage of the benefits of reformate. The engine in the vehicle was modified to add the following components: the dedicated EGR loop, an additional injector for delivering extra fuel for reformation, a modified boost system that included a supercharger, high energy dual coil offset (DCO) ignition and other actuators used to enable the control of D-EGR combustion.
Technical Paper

A Deterministic Multivariate Clustering Method for Drive Cycle Generation from In-Use Vehicle Data

2021-04-06
2021-01-0395
Accurately characterizing vehicle drive cycles plays a fundamental role in assessing the performance of new vehicle technologies. Repeatable, short duration representative drive cycles facilitate more informed decision making, resulting in improved test procedures and more successful vehicle designs. With continued growth in the deployment of onboard telematics systems employing global positioning systems (GPS), large scale, low cost collection of real-world vehicle drive cycle data has become a reality. As a result of these technological advances, researchers, designers, and engineers are no longer constrained by lack of operating data when developing and optimizing technology, but rather by resources available for testing and simulation. Experimental testing is expensive and time consuming, therefore the need exists for a fast and accurate means of generating representative cycles from large volumes of real-world driving data.
Technical Paper

A Dual-Use Hybrid Electric Command and Control Vehicle

2001-11-12
2001-01-2775
Until recently, U.S. government efforts to dramatically reduce emissions, greenhouse gases and vehicle fuel consumption have primarily focused on passenger car applications. Similar aggressive reductions need to be extended to heavy vehicles such as delivery trucks, buses, and motorhomes. However, the wide range of torques, speeds, and powers that such vehicles must operate under makes it difficult for any current powertrain system to provide the desired improvements in emissions and fuel economy. Hybrid electric powertrains provide the most promising, near-term technology that can satisfy these requirements. This paper highlights the configuration and benefits of a hybrid electric powertrain capable of operating in either a parallel or series mode. It describes the hybrid electric components in the system, including the electric motors, power electronics and batteries.
Technical Paper

A Heavy-Fueled Engine for Unmanned Aerial Vehicles

1995-02-01
950773
The growing usage of Unmanned Aerial Vehicles (UAVs) for aerial surveillance and reconnaissance in military applications calls for lightweight, reliable powerplants that burn heavy distillate fuels. While mass-produced engines exist that provide adequate power-to-weight ratio in the low power class needed for UAVs, they all use a spark-ignited combustion system that requires high octane fuels. Southwest Research Institute (SwRI) has embarked upon an internal research effort to design and demonstrate an engine that will meet the requirements of high power density, power output compatible with small unmanned aircraft, heavy-fuel combustion, reliable, durable construction, and producible design. This effort has culminated in the successful construction and operation of a demonstrator engine.
Technical Paper

A High-Energy Continuous Discharge Ignition System for Dilute Engine Applications

2013-04-08
2013-01-1628
SwRI has developed the DCO® ignition system, a unique continuous discharge system that allows for variable duration/energy events in SI engines. The system uses two coils connected by a diode and a multi-striking controller to generate a continuous current flow through the spark plug of variable duration. A previous publication demonstrated the ability of the DCO system to improve EGR tolerance using low energy coils. In this publication, the work is extended to high current (≻ 300 mA/high energy (≻ 200 mJ) coils and compared to several advanced ignition systems. The results from a 4-cylinder, MPI application demonstrate that the higher current/higher energy coils offer an improvement over the lower energy coils. The engine was tested at a variety of speed and load conditions operating at stoichiometric air-fuel ratios with gasoline and EGR dilution.
Technical Paper

A New Engine Test for the Development of Heavy Duty Diesel Engine Oils for Engines with Exhaust Gas Recirculation: The Mack T-10 Test

2000-06-19
2000-01-1985
More stringent emission legislation has been a driver for changes in the design of Heavy Duty Diesel engines since the 1980s. Optimization of the combustion processes has lead to significant reductions of exhaust emission levels over the years. However, in the year 2002, diesel engines in the USA will have to meet an even more stringent set of emission requirements. Expectations are that this will force most engine builders to incorporate Exhaust Gas Recirculation (EGR). Several studies of the impact of EGR on lubricant degradation have shown increased levels of contamination with soot particles and acidic components. Both of these could lead to changes in lubricant requirements. The industry is developing a new specification for diesel engine lubricants, PC-9, using test procedures incorporating engines with EGR.
Technical Paper

A Next-Generation Emission Test Procedure for Small Utility Engines - Part 1, Background and Approach

1990-09-01
901595
Measurement of emissions from small utility engines has usually been accomplished using steady-state raw emissions procedures such as SAE Recommended Practice J1088. While raw exhaust measurements have the advantage of producing modal exhaust gas concentration data for design feedback; they are laborious, may influence both engine performance and the emissions themselves, and have no provision for concurrent particulate measurements. It is time to consider a full-dilution procedure similar in principle to automotive and heavy-duty on-highway emission measurement practice, leading to improvements in many of the areas noted above, and generally to much higher confidence in data obtained. When certification and audit of small engine emissions become a reality, a brief dilute exhaust procedure generating only the necessary data will be a tremendous advantage to both manufacturers and regulatory agencies.
Technical Paper

A PC-Based Model for Predicting NOx Reductions in Diesel Engines

1996-10-01
962060
A menu-driven, PC-based model, ALAMO_ENGINE, has been developed to predict the nitrogen oxides (NOx) reductions in direct-injected, diesel engines due to exhaust gas recirculation (EGR), emulsified fuels, manifold or in-cylinder water injection, fuel injection timing changes, humidity effects, and intake air temperature changes. The approach was to use a diesel engine cycle simulation with detailed gas composition calculations for the intake and exhaust gases (including EGR, water concentration, fuel-type effects, etc.), coupled with a code to calculate stoichiometric, adiabatic flame temperatures and expressions that correlate measured NOx emissions with the flame temperature. Execution times are less than 10 seconds on a 486-66 MHz PC.
Technical Paper

A Test Method for Evaluating Feasibility of Lean Nitrous Oxide Traps

2011-01-19
2011-26-0030
The Lean NOx Trap (LNT) is a technology that could be used to reduce oxides of nitrogen from heavy-duty diesel engines to meet emissions standards (US 2010 and EURO 4/5/6). This paper describes a case-study for evaluating the feasibility of an LNT. LNTs suffer from sulfur poisoning and thermal aging limitations. Catalyst formulations allow reversal of sulfur poisoning through desulfation procedures. A case study was performed using a 7-liter diesel engine equipped with VGT, common rail fuel injection system, cooled EGR, oxidation catalyst and DPF. The LNT was positioned after the particulate filter. Gaseous raw emissions were measured from engine and various stages of aftertreatment. A Fourier Transform Infrared (FTIR) analyzer was used to characterize Ammonia and SO₂. Temperatures were measured in the substrate. Fast response NOx sensor allowed for continuous monitoring of the NOx in the LNT. A wide-range O₂ sensor was also utilized to measure equivalence ratio.
Technical Paper

Achievement of Low Emissions by Engine Modification to Utilize Gas-to-Liquid Fuel and Advanced Emission Controls on a Class 8 Truck

2005-10-24
2005-01-3766
A 2002 Cummins ISM engine was modified to be optimized for operation on gas-to-liquid (GTL) fuel and advanced emission control devices. The engine modifications included increased exhaust gas recirculation (EGR), decreased compression ratio, and reshaped piston and bowl configuration. The emission control devices included a deNOx filter and a diesel particle filter. Over the transient test, the emissions met the 2007 standards. In July 2004, the modified engine was installed into a Class 8 tractor for use by a grocery fleet. Chassis emission testing of the modified vehicle was conducted at the National Renewable Energy Laboratory's (NREL) Renewable Fuels and Lubricants (ReFUEL) facility. Testing included hot and cold replicate Urban Dynamometer Driving Schedule (UDDS) and New York Composite (NYComp) cycles and several steady-state points. The objective of the testing was to demonstrate the vehicle's with the modified engine.
Technical Paper

Advanced Nondestructive Testing Methods for Bearing Inspection

1972-02-01
720172
The principles of the magnetic-perturbation method of flaw detection and the Barkhausen noise residual stress measurement method are briefly reviewed. It is suggested that they provide very powerful tools for assuring improved ball bearing performance. The methods are applied for the evaluation of ball bearing races. Typical experimental results are presented along with metallurgical sectioning correlation.
Technical Paper

Advanced Performance of Metallic Converter Systems Demonstrated on a Production V8 Engine

2002-03-04
2002-01-0347
It has been shown within the catalyst industry that the emission performance with higher cell density technology and therefore with higher specific geometric area is improved. The focus of this study was to compare the overall performance of high cell density catalysts, up to 1600cpsi, using a MY 2001 production vehicle with a 4.7ltr.V8 engine. The substrates were configured to be on the edge of the design capability. The goal was to develop cost optimized systems with similar emission and back pressure performance, which meet physical and production requirements. This paper will present the results of a preliminary computer simulation study and the final emission testing of a production vehicle. For the pre-evaluation a numerical simulation model was used to compare the light-off performance of different substrate designs in the cold start portion of the FTP test cycle.
Journal Article

Advancing Platooning with ADAS Control Integration and Assessment Test Results

2021-04-06
2021-01-0429
The application of cooperative adaptive cruise control (CACC) to heavy-duty trucks known as truck platooning has shown fuel economy improvements over test track ideal driving conditions. However, there are limited test data available to assess the performance of CACC under real-world driving conditions. As part of the Cummins-led U.S. Department of Energy Funding Opportunity Announcement award project, truck platooning with CACC has been tested under real-world driving conditions and the results are presented in this paper. First, real-world driving conditions are characterized with the National Renewable Energy Laboratory’s Fleet DNA database to define the test factors. The key test factors impacting long-haul truck fuel economy were identified as terrain and highway traffic with and without advanced driver-assistance systems (ADAS).
Technical Paper

Air-Assisted Direct Injection Diesel Investigations

2013-04-08
2013-01-0907
Enhancement of fuel/air mixing is one path towards enabling future diesel engines to increase efficiency and control emissions. Air-assist fuel injections have shown potential for low pressure applications and the current work aims to extend air-assist feasibility understanding to high pressure environments. Analyses were completed and carried out for traditional high pressure fuel-only, internal air-assist, and external air-assist fuel/air mixing processes. A combination of analytical 0-D theory and 3D CFD were used to help understand the processes and guide the design of the air-assisted setup. The internal air-assisted setup was determined to have excellent liquid fuel vaporization, but poorer fuel dispersion than the traditional high-pressure fuel injections.
Technical Paper

Alternative Fuel Vehicle Fleet Buyer's Guide

1999-05-03
1999-01-1510
Fleet managers need a tool to assist them in assessing their need to comply with EPAct and to provide them with the ability to obtain information that will allow them to make alternative fuel vehicle purchasing decisions. This paper will describe the Web-based tool that will inform a fleet manager, based on their geographic location, the type of fleet they own or operate, and the number and types of vehicles in their fleet, whether or not they need to meet the requirements of EPAct, and, if so, the percentage of new vehicle purchases needed to comply with the law. The tool provides detailed specifications on available OEM alternative fuel vehicles, including the purchase cost of the vehicles, fuel and fuel system characteristics, and incentives and rebates surrounding the purchase of each vehicle. The full set of federal, state, and local incentives is made available through the tool, as well as detailed access to refueling site and dealership locations.
X