Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

CO2 Pump for the Space Station Advanced Atmosphere Revitalization Subsystem

2001-07-09
2001-01-2418
The current operation of the International Space Station (ISS) calls for the oxygen used by the occupants to be vented overboard in the form of CO2, after the CO2 is scrubbed from the cabin air. Likewise, H2 produced via electrolysis in the oxygen generator is also vented. NASA is investigating the use of the Sabatier process to combine these two product streams to form water and methane. The water is then used in the oxygen generator, thereby conserving this valuable resource. One of the technical challenges to developing the Sabatier reactor is transferring CO2 from the Carbon Dioxide Removal Assembly (CDRA) to the Sabatier reactor at the required rate, even though the CDRA and the Sabatier reactor operate on different schedules. One possible way to transfer and store CO2 is to use a mechanical compressor and a storage tank.
Journal Article

Implementation and Comparison of Model Co-Simulation Methods in a Turbofan Model

2020-03-10
2020-01-0003
The process of developing, parameterizing, validating, and maintaining models occurs within a wide variety of tools, and requires significant time and resources. To maximize model utilization, models are often shared between various toolsets and experts. Model integration is typically divided into two categories: model exchange and model co-simulation. Of these two categories, model co-simulation is typically regarded as the more complex and difficult to implement. Co-Simulation provides the ability to integrate models between different toolsets or incompatible versions of the same software. Additionally, it provides the capabilities for real-time simulations and hardware-in-the-loop test scenarios. This paper reviews some of the common co-simulation data communication methods including pipes and file input/output. The differences between serial and parallel, aka synchronous and asynchronous, communication patterns are also discussed.
Journal Article

Particle Emissions from a 2009 Gasoline Direct Injection Engine Using Different Commercially Available Fuels

2010-10-25
2010-01-2117
Total and solid particle mass, size, and number were measured in the dilute exhaust of a 2009 vehicle equipped with a gasoline direct injection engine along with an exhaust three-way-catalyst. The measurements were performed over the FTP-75 and the US06 drive cycles using three different U.S. commercially available fuels, Fuels A, B, and C, where Fuel B was the most volatile and Fuel C was the least volatile with higher fractions of low vapor pressure hydrocarbons (C10 to C12), compared to the other two fuels. Substantial differences in particle mass and number emission levels were observed among the different fuels tested. The more volatile gasoline fuel, Fuel B, resulted in the lowest total (solid plus volatile) and solid particle mass and number emissions. This fuel resulted in a 62 percent reduction in solid particle number and an 88 percent reduction in soot mass during the highest emitting cold-start phase, Phasel, of the FTP-75, compared to Fuel C.
Technical Paper

Technology Demonstration of U.S. Army Ground Materiel Operating on Aviation Kerosene Fuel

1992-02-01
920193
A technology demonstration program was conducted by the U.S. Army to verify the feasibility of using aviation turbine fuel JP-8 in all military diesel fuel-consuming ground vehicles and equipment (V/E). Over 2,800 pieces of military equipment participated in a two and one-half year program accumulating over 2,621,000 total miles (4,219,810 km) using JP-8 in combat/tracked, tactical/wheeled, and transportation motor pool vehicles. Over 71,000 hours of operation were accumulated in diesel/turbine engine-driven generator sets using JP-8 fuel. Comparisons of various performance areas with baseline diesel fuel (DF-2) operation were made.
Technical Paper

the behavior of Radiation-Resistant ANP TURBINE LUBRICANTS

1959-01-01
590051
RADIATION can produce almost instantaneous failure of modern aircraft lubricants, tests at Southwest Research Institute show. Two types of failures demonstrated are rapid viscosity rise and loss of heat conductivity. Furthermore, it was found that lubricants can become excessively corrosive under high-level radiation. Generally speaking, the better lubricants appeared to improve in performance while marginal ones deteriorated to a greater extent under radiation. When the better lubricants were subjected to static irradiation prior to the deposition test, there was a minor increase in deposition number as the total dose was increased.
X