Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Development of Prediction Models for Spark Erosion Machining of SS304 Using Regression Analysis

2022-10-05
2022-28-0339
Stainless Steel 304 (SS304) is a nickel–chromium–based alloy that is regularly used in valves, refrigeration components, evaporators, and cryogenic containers due to its greater corrosion resistance, high ductility, and non-magnetic properties, as well as good weldability and formability. Multiple regression analysis was used to establish empirical relationships between process variables. Additionally, the established regression equations are employed to predict and compare experimental data. Due to the increasing demands for high-quality surface finishes and complex geometries, traditional methods are being replaced by non-conventional techniques such as wire EDM. This process, which emerged from the electrical discharge machining concept, mainly involves creating intricate components. WEDM results in a high degree of precision and excellent surface quality. Due to the complexity of WEDM, the processing parameters cannot be selected by using the trial-and-error method.
Technical Paper

Development of Regression Models for Laser Beam Welding of Inconel 718 Alloy Thin Sheets

2022-10-05
2022-28-0340
Inconel 718 is a superalloy made from nickel that has exceptional mechanical properties. It has been widely used in the manufacturing of various components such as nuclear and aerospace aircraft. Due to its exceptional corrosion resistance, this material can be utilized in various environments. Due to the increasing number of challenges that come with conventional methods of welding, the use of advanced techniques has been developed to produce better and sound quality joints. One of these is Laser Beam Welding (LBW) technique. This method utilizes a high-intensity beam to create a better and more quality weld joints with improved mechanical properties. This study aims to develop multiple regression models that can be used to analyze the performance of laser beam welding on Inconel 718 alloy joints.
Technical Paper

Investigations on advanced Joining Method for Inconel 718 and SS304 Dissimilar Joints

2022-10-05
2022-28-0345
Modern automobile applications such as petrol, diesel, and gaseous fuel injection system use dissimilar Inconel 718 (IN718) and Stainless Steel 304 (SS 304) joints. IN 718 is a precipitation-hardened austenitic nickel-based superalloy with exceptional qualities such as high strength, resistance to corrosion, greater toughness, as well as resistance to thermal induced fatigue at elevated temperatures (between 150 and 1500oC), while SS 304 is a T 300 Series austenitic stainless steel alloy that can be used successfully in wide range of applications due to greater resistance to corrosion, good high and low temperature strength and ductility with excellent weld ability and formability. To get a better understanding of the mechanical characteristics of these heterogeneous weldments, these alloy joints were created using laser beam welding, one of the most modern joining techniques for high-strength materials.
Technical Paper

Machinability Studies on Wire Electrical Discharge Machining of Aluminium Based Metal Matrix Composite for Automotive Applications

2022-10-05
2022-28-0353
The advanced lifestyle demands materials that are light and robust, and aluminum and its alloys are commonly used in various engineering components due to their exceptional properties such as light weight, enhanced strength, and being economically affordable. Due to their superior mechanical properties, such as strength and flexibility, are commonly used in various industrial applications. Metal Matrix Composites (MMCs) are very essential materials used in several applications as they are more robust and harder than any conventional material. In this study, a metal matrix composite made of aluminum and Boron Nitride (BN) is investigated to analyze its various properties. The study is performed by using Wire Electrical Discharge Machining (WEDM). The three independent parameters of the composite are its pulse on time, peak current, and pulse off time. The study aims to analyze the effects of various process variables on the desired performance of the metal matrix composite.
X