Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Experimental Investigation on the Gas Jet Behavior for a Hollow Cone Piezoelectric Injector

2014-10-13
2014-01-2749
Direct injection of natural gas in engines is considered a promising approach toward reducing engine out emissions and fuel consumption. As a consequence, new gas injection strategies have to be developed for easing direct injection of natural gas and its mixing processes with the surrounding air. In this study, the behavior of a hollow cone gas jet generated by a piezoelectric injector was experimentally investigated by means of tracer-based planar laser-induced fluorescence (PLIF). Pressurized acetone-doped nitrogen was injected in a constant pressure and temperature measurement chamber with optical access. The jet was imaged at different timings after start of injection and its time evolution was analyzed as a function of injection pressure and needle lift.
Journal Article

Influence of EGR on Post-Injection Effectiveness in a Heavy-Duty Diesel Engine Fuelled with n-Heptane

2014-10-13
2014-01-2633
Numerical simulations of a heavy-duty diesel engine fuelled with n-heptane have been performed with the conditional moment closure (CMC) combustion model and an embedded two-equation soot model. The influence of exhaust gas recirculation on the interaction between post- and main- injection has been investigated. Four different levels of EGR corresponding to intake ambient oxygen volume fractions of 12.6, 15, 18 and 21% have been considered for a constant intake pressure and temperature and unchanged injection configuration. Simulation results have been compared to the experimental data by means of pressure and apparent heat-release rate (AHRR) traces and in-cylinder high-speed imaging of natural soot luminosity and planar laser-induced incandescence (PLII). The simulation was found to reproduce the effect of EGR on AHRR evolutions very well, for both single- and post-injection cases.
Technical Paper

Optical Investigations of Soot Reduction Mechanisms using Post-Injections in a Cylindrical Constant Volume Chamber (CCVC)

2014-10-13
2014-01-2839
Past research has shown that post injections have the potential to reduce Diesel engine exhaust PM concentration without any significant influence in the NOx emissions. In earlier research it was observed that soot reduction due to a post injection is based on three reasons: increased turbulence (1) and heat (2) from the post injection during soot oxidation and lower soot formation due to smaller main injection for similar load conditions (3). The second effect of heat addition during the soot oxidation is debated in the literature. The experimental investigation presented in the current work provides insight into the underlying mechanisms of soot formation and reduction using post injections under different operating conditions. The experimental data have been obtained using a cylindrical constant volume chamber with high optical access. The soot evolution has been obtained using 2-color-pyrometry.
Technical Paper

Simulations of In-Cylinder Processes in a Diesel Engine Operated with Post-Injections Using an Extended CMC Model

2014-10-13
2014-01-2571
In this study, numerical simulations of in-cylinder processes associated to fuel post-injection in a diesel engine operated at Low Temperature Combustion (LTC) have been performed. An extended Conditional Moment Closure (CMC) model capable of accounting for an arbitrary number of subsequent injections has been employed: instead of a three-feed system, the problem has been described as a sequential two-feed system, using the total mixture fraction as the conditioning scalar. A reduced n-heptane chemical mechanism coupled with a two-equation soot model is employed. Numerical results have been validated with measurements from the optically accessible heavy-duty diesel engine installed at Sandia National Laboratories by comparing apparent heat release rate (AHRR) and in-cylinder soot mass evolutions for three different start of main injection, and a wide range of post injection dwell times.
X