Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Design and Development of Single Seat, Four Wheeled All-Terrain Vehicle for Baja Collegiate Design Series

2015-09-29
2015-01-2863
There has been a rapid increase in popularity of multipurpose All-terrain vehicles (ATV) across the globe over the past few years. SAE BAJA event gives student-community an opportunity to delve deeper into the nitty-gritty of designing a single seat, four-wheeled off road vehicle. The design and development methodology presented in this paper is useful in conceptualization of an ATV for SAE BAJA event. The vehicle is divided into various subsystems including chassis, suspension, drive train, steering, and braking system. Further these subsystems are designed and comprehensively analyzed in software like SolidWorks, ANSYS, WINGEO and MS-Excel. The 3-D model of roll cage is designed in SolidWorks and analyzed in ANSYS 9.0 for front, rear and side impact along with front and side roll-over conditions. Special case of wheel bump is also analyzed. Weight, wall thickness and bending strength of tubing used for roll cage are comprehensively studied.
Technical Paper

Electrically Powered Hydraulic Steering Systems for Light Commercial Vehicles

2007-10-30
2007-01-4197
Electrically Powered Hydraulic Steering (EPHS) was developed in the early 90s and previously applied to vehicle segments B and C (small and medium-sized passenger cars). Till now more than 10 million vehicles are in the field. The advantages consist of the well known power density coming along with the flexible package. Value is added due to the consequent development and usage of electronic control realized in compact physical units. As a result key features for chassis control systems like controllability, high dynamic performance, and low energy consumption are achieved while maintaining mature and robust hydraulic components. Recent market requirements in other segments, e.g. Sport Utility Vehicles (SUV) and Light Commercial Vehicles (LCV) require higher powered motor pump units and lead to the decision to develop products in this direction.
Journal Article

Mobility and Energy Efficiency Analysis of a Terrain Truck

2013-04-08
2013-01-0672
While much research has focused on improving terrain mobility, energy and fuel efficiency of terrain trucks, only a limited amount of investigation has gone into analysis of power distribution between the driving wheels. Distribution of power among the driving wheels has been shown to have a significant effect on vehicle operating characteristics for a given set of operating conditions and total power supplied to the wheels. Wheel power distribution is largely a function of the design of the driveline power dividing units (PDUs). In this paper, 6×6/6×4 terrain truck models are analyzed with the focus on various combinations of PDUs and suspension systems. While these models were found to have some common features, they demonstrate several different approaches to driveline system design.
X