Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Adopting Pothole Mitigation System for Improved Ride, Handling and Enhanced Component Life

2024-01-16
2024-26-0059
Potholes are a major cause of discomfort for riders and vehicle damage. The passive suspension systems which are used in the passenger vehicles are primarily reaction based. These can’t adapt to the changing road conditions which means the best ride quality and handling characteristics cannot be ensured for different driving situations. Passive suspension system also needs more maintenance due to its inability to reduce the impact of the road irregularities. In recent years, semi-active suspension systems have been developed to improve ride comfort and vehicle safety. This paper covers the integration of a semi-active suspension system with a road preview mechanism with a TATA car model to investigate its impact on ride comfort, handling characteristics and component loads in digital domain. A quarter car vehicle model is used to compare different active damping control strategies.
Technical Paper

An Integrated Approach Using Multi-Body Dynamics Simulation & Driving Simulator towards Chassis Development for an SUV Vehicle

2024-01-16
2024-26-0050
Driving dynamics performance is one of the key customer attributes to be developed during product development. In the vehicle development process, freezing the hardware of the chassis aggregates is one of the major priorities to kick off the other vehicle development activities. The current work involves the development of a multilink suspension for an SUV class vehicle. Typically, each OEM performs several product development loops for maturing the vehicle design. The driving dynamics performance evaluation and tuning happens on a physical vehicle with the driver in Loop. Tuning of suspension parameter on the physical vehicle entails actual replacement of parts/components. This encompasses multiple tuning cycles in product development associated with increased cost and test time. To reduce the product development time and cost while delivering first time right chassis configuration, we took an approach of getting driver-in-loop through driving simulator in the concept phase.
Technical Paper

Investigation of Cabin Noise while Accelerating on Low Mu Track through Simulation Approach Using Full Vehicle ADAMS/Car Model

2019-01-09
2019-26-0179
Cabin noise is a significant product quality criteria which enables the customers for product differentiation. There are various sources of cabin noise such as wind, structures(panels), engine, suspension, tire and roads. During product development phase, extensive tests has been conducted to improve vehicle dynamics behavior on various climatic conditions. One such test is accelerating vehicle on low mu or icy surface. While performing acceleration manoeuvre (tractions) on a low mu tracks, Cabin noise with source identified from front underbody & low tractive torque build up is reported. This undesirable behavior may occur due to following reason (1) Excitation of coupled modes between suspension and powertrain which induces torque fluctuation. (2) Transmissibility of various subsystem can be the reason for above problem statement. (3) Poorly chosen tire compounds and design leads to fluctuation in torque.
X