Refine Your Search

Topic

Author

Search Results

Technical Paper

A Novel Technique to Establish Various Important Characteristic to Analyze Complete Hydraulic Power Steering System using Model Based Design Approach

2017-01-10
2017-26-0259
Steering system deliver a precise directional control to the vehicle chassis and ensure the safe driving at all maneuvers. Hydraulic power assisted system (HPAS) helps drivers to steer by boosting steering assistance of the steering wheel while retaining the road feel. HPAS performance is associated with the design characteristics of rotary valve, steering, suspension, kinematics, brake, tire, vehicle speed and load transfer. Thus a detailed power steering system model is absolutely necessary to evaluate and optimize the performance characteristics. However, many components of HPAS system are proprietary in nature so it is very challenging to get component characteristic of each sub-system for the complete power steering system model. Hence, it is very important to establish a technique to extract all such influencing characteristics with available test facility.
Technical Paper

Adopting Pothole Mitigation System for Improved Ride, Handling and Enhanced Component Life

2024-01-16
2024-26-0059
Potholes are a major cause of discomfort for riders and vehicle damage. The passive suspension systems which are used in the passenger vehicles are primarily reaction based. These can’t adapt to the changing road conditions which means the best ride quality and handling characteristics cannot be ensured for different driving situations. Passive suspension system also needs more maintenance due to its inability to reduce the impact of the road irregularities. In recent years, semi-active suspension systems have been developed to improve ride comfort and vehicle safety. This paper covers the integration of a semi-active suspension system with a road preview mechanism with a TATA car model to investigate its impact on ride comfort, handling characteristics and component loads in digital domain. A quarter car vehicle model is used to compare different active damping control strategies.
Technical Paper

An Integrated Approach Using Multi-Body Dynamics Simulation & Driving Simulator towards Chassis Development for an SUV Vehicle

2024-01-16
2024-26-0050
Driving dynamics performance is one of the key customer attributes to be developed during product development. In the vehicle development process, freezing the hardware of the chassis aggregates is one of the major priorities to kick off the other vehicle development activities. The current work involves the development of a multilink suspension for an SUV class vehicle. Typically, each OEM performs several product development loops for maturing the vehicle design. The driving dynamics performance evaluation and tuning happens on a physical vehicle with the driver in Loop. Tuning of suspension parameter on the physical vehicle entails actual replacement of parts/components. This encompasses multiple tuning cycles in product development associated with increased cost and test time. To reduce the product development time and cost while delivering first time right chassis configuration, we took an approach of getting driver-in-loop through driving simulator in the concept phase.
Technical Paper

Assessment of Passenger Car for Surface Dirt Contamination in Wind Tunnel

2021-09-22
2021-26-0385
Self-soiling or surface contamination is usual phenomenon observed during rainy season wherein dirt on road are picked by rotating wheel and later released in air as fine particles. These released dirt particles are further carried by airflow around vehicle and as a result stick on vehicle exterior surfaces leading to surface contamination. Surface dirt contamination is one of critical issues that need consideration during early phase of vehicle development as vehicle styling plays a critical role for airflow around vehicle and therefore settling of dirt on vehicle exterior surfaces. Non consideration of such aspects in design can lead to safety issues with likely non-functioning of parking sensors, camera and visibility issues through ORVM, tailgate glass etc. Hence it is important to understand physical as well as digital techniques for assessment of vehicle for surface dirt contamination.
Technical Paper

Bus Cabin Noise Prediction of Large HVAC System Using Total Noise Method

2023-05-08
2023-01-1126
HVAC system design has an accountability towards acoustic comfort of passengers of a vehicle. Owing to larger cabin volume of a bus, multiple air blowers have to be installed to ensure comfort of passengers. Such multiple blowers produce significant flow induced noise inside the cabin. For commercial success, it becomes essential to predict intensity of such a flow induced noise at very early stages in product development. Conventionally sliding mesh based CFD approach is deployed to predict flow and turbulence noise around each blower. However due to complexity, this method becomes computationally intensive resulting in cost and time inefficiency. Hence it is desirable to innovate around an alternative rapid, reliable prediction method, which ensures quick turnaround of prediction.
Technical Paper

Comparative Analysis of Different Corrosion Test Cycles

2023-05-25
2023-28-1325
Corrosion in automotive industry is broadly categorized into cosmetic & perforation corrosion. Cosmetic corrosion comprises of superficial red rust which is deleterious to the overall aesthetic appeal of the vehicle but can be rectified. Perforation corrosion involves complete erosion of the panel, compromising structural integrity of the respective part. Perforation corrosion demands part replacement. In order to tackle this menace, automotive OEMs have formulated varied corrosion strategies in terms of selection of appropriate substrate, part design & surface protection scheme. Validation of various corrosion strategies become pivotal during the development phase of various parts and assemblies. Traditionally, Salt Spray Test (SST) has been used to determine corrosion life of materials/parts/assemblies. This test however does not simulate real-world conditions.
Technical Paper

Comprehensive Assessment of Driver Monitoring System for Commercial Vehicle Applications Using Innovative Lab Testing Approach

2024-01-16
2024-26-0027
The commercial vehicle sector (especially trucks) has major role in economic growth of a nation. With improving infrastructure, increasing number of commercial vehicles and growing amount of Vulnerable Road Users (VRUs) on roads, accidents are also increasing. As per RASSI (Road Accident Sampling System India) FY2016-21 database, commercial vehicles are involved in 43% of total accidents on Indian roads. One of the major causes of these accidents is Driver Drowsiness and Inattention (DDI) (approx. 10% contribution in total accidents). This paper describes novel driver-in-loop performance assessment methodology for comprehensive verification of Driver Monitoring System (DMS) for commercial vehicle application. Novelty lies in specification of test subjects, driving styles and variety of road traffic scenarios for verification of DMS system. Test setup is made modular to cater to different platform environments (Heavy, Intermediate, Light) with minor modifications.
Technical Paper

Derivation of Test Schedule for Clutch Using Road Load Data Analysis and Energy Dissipation as Basis

2018-04-03
2018-01-0389
During every clutch engagement energy is dissipated in clutch assembly because of relative slippage of clutch disc w.r.t. flywheel and pressure plate. Energy dissipated in clutch is governed by many design parameters like driveline configuration of the vehicle vis-a-vis vehicle mass, and operational parameters like road conditions, traffic conditions. Clutch burning failure, which is the major failure mode of clutch assembly, is governed by energy dissipation phenomenon during clutch engagement. Clutch undergoes different duty cycles during usage in city traffic, highways or hilly regions during its lifetime. A test schedule was derived using energy dissipated during every clutch engagement event as a base and using road load data collected on the vehicle. Road load data was collected in different road mix conditions comprised of city traffic, highway, hilly region, rough road for few hundred kilometers.
Technical Paper

Design Optimization of a Mini-Truck Hydraulic Power Steering System Based on Road Load Data (RLD)

2010-04-12
2010-01-0198
Today's automotive industry demands high quality component as well as system designs within very short period of time to provide more value added features to customers on one hand and to meet stringent safety standards on the other. To reconcile economy issues, design optimization has become a key issue. In the last few decades, many OEMs took to analytical tools like Computer-Aided-Engineering (CAE) tools in order to decrease the number of prototype builds and to speed up the time of development cycle. Although such analytical tools are relatively inexpensive to use and faster to implement as compared to the costly traditional design and testing processes: however, there are many variables that CAE tools cannot adequately consider, such as manufacturing processes, assembly, material anisotropy and residual stresses. Therefore, still smart measuring and testing techniques are required to substantiate the CAE results.
Technical Paper

Development and Prediction of Vehicle Drag Coefficient Using OpenFoam CFD Tool

2019-01-09
2019-26-0235
Vehicle aerodynamic design has a critical impact on fuel efficiency of the vehicle. Reducing aerodynamic wind resistance of the vehicle's exterior shape and reducing losses associated with requirements for engine compartment cooling through vehicle front openings plays key role in achieving desired aerodynamic efficiency. Today fairly large number of computational fluid dynamics (CFD) simulations are being performed during the vehicle aerodynamic design and development process and it is rapidly increasing day by day. Vehicle aerodynamic design and development process involves mainly aerodynamic shape development, aerodynamic optimizations of vehicle external components (side view mirror, spoilers, underbody shield etc.) and number of” what if studies during preliminary design process. Licensing costs of the available commercial CFD simulation solver has significant impact on product development cost when numbers of aerodynamic simulations expand.
Technical Paper

Development of Mount for Electric Powertrains - A Multi Degree of Freedom Optimization Approach

2020-04-14
2020-01-0417
The recent vehicle development demands for electric powertrain as against conventional fuels engines. The electric powertrain offers advantages in terms of cleaner and quieter operations. In electric vehicle, the conventional engine is replaced by electric motor operated on batteries. Here, the conventional engine refers to those powered by diesel, petrol, CNG and some hybrid vehicles using fuel as primary source for power generation. Thus, the system design approach for mount also changes. At present, various approaches are being followed to mount electric powertrain like conventional pendulum type, with or without cradle, Common or different motor and electric box mountings etc. The electric powertrain differs from conventional powertrain in terms of weights, mass moment of inertia, torque, NVH requirements like Key in Key off, idling, low frequency vibrations etc. Thus conventional mount will not necessarily meet NVH requirements for Electric powertrains.
Technical Paper

Development of a Polymer Electrolyte Membrane Fuel Cell Stack for a Range Extender for Electric Vehicles

2019-01-09
2019-26-0087
Severe air pollution in cities caused largely by vehicular emissions, which requires urgent remedial measures. As automobiles are indispensable modes of personal and public mobility, pre-emptive efforts are necessary to reduce the adverse effects arising from their operation. A significant improvement in air quality can be achieved through large-scale introduction of vehicles with extremely low emission such as hybrid-electric and zero emission vehicles. Range extension of electric vehicles (EVs) is also of utmost importance to alleviate the handicap of restricted mileage of purely plug-in EVs as compared to conventional vehicles. This paper presents development of a polymer electrolyte membrane (PEM) fuel cell stack used for the range extender electric vehicles. The Fuel cell stack for range extender vehicle operated in a dead end mode using hydrogen and air as open cathode.
Technical Paper

Effect of Flywheel Mass and Its Center of Gravity on Crankshaft Endurance Limit Safety Factor and Dynamics

2013-04-08
2013-01-1743
The crankshaft is the component which transmits dynamic loads from cylinder pressure and inertial loads in engine operating conditions. Because of its crucial importance in functioning of engine and requisite to sustain high dynamic and torsional loading, crankshaft fatigue life is desired to be higher than the predicted engine operating life. Performance of the crank train in diesel engine applications largely depends on the components of its mass elastic system. Flywheel is one such component whose design affects the life of crankshaft. In the present study, the crank train comprising of torsional vibration damper, crankshaft and flywheel along with clutch cover is considered for analysis. Crankshaft dynamic simulation is performed with multi body dynamics technique, fatigue safety factors of crankshaft are calculated with dynamic loads under engine operating conditions.
Technical Paper

Electro-Magnetic Parking Brake System for Electric Vehicles

2019-01-09
2019-26-0119
Regular vehicle has the advantage of Engine resistance even when it is not fired, hence chances of vehicle roll back on gradients will be minimized. This is not the case for Electric vehicles, which uses an electric motor that does not have any resistance offered to wheels that prevent vehicle roll back on gradient. This leads to increased load on the conventional hydraulic brakes due to absence of engine inertia. Hence, there is a need for a low cost and reliable automatic braking system which can help in holding the vehicle and assists the driver during launch in case he need to stop at a gradient. An Electromagnetic brake (EM brake) system can be used as a solution for the above-mentioned requirement. EM brake can provide hill hold and hill assist effect in addition to automatic parking brake application when the vehicle is turned-off. This system will assist anyone who need to halt the vehicle at a gradient and then relaunch it without much struggle.
Technical Paper

Engine Mount Stopper Design Techniques to Balance Vehicle Level Buzz, Squeak, Rattle and Durability

2020-04-14
2020-01-0401
In the highly competitive global automotive market and with the taste of customer becoming more refined, the need to develop high quality products and achieve product excellence in all areas to obtain market leadership is critical. Buzz, squeak and rattle (BSR) is the automotive industry term for the audible engineering challenges faced by all vehicle and component engineers. Minimizing BSR is of paramount importance when designing vehicle components and whole vehicle assemblies. Focus on BSR issues for an automobile interior component design have rapidly increased due to customer’s expectation for high quality vehicles. Also, due to advances in the reduction of vehicle interior and exterior noise, engine mounts have recently been brought to the forefront to meet the vehicle interior sound level targets. Engine mounts serve two principal functions in a vehicle, vibration isolation and engine support.
Technical Paper

Evaluation of Anti Scratch Additives on Polypropylene Compound

2013-04-08
2013-01-1391
Automotive Industry is constantly upgrading the value offered on their products at optimized cost. Scratch and mar resistance of interiors and exterior parts, is an important attribute which is linked to perceived quality and value offered to customers. Polypropylene material is optimum material of choice for these parts due to its unique advantages. However, filled polypropylene material has poor scratch and mar resistance. Many techniques for scratch resistance improvement are available such as additions of slip agents, co additives, special fillers, siloxanes, etc. However, some of them may offer some disadvantages like stickiness or tackiness on the surfaces. The choice depends on its effectiveness & cost. This paper deals with design of experiments to evaluate effectiveness of 4 types of additives and their optimum % to give scratch resistance improvement without having detrimental impact on other critical properties.
Technical Paper

Evaluation of Ferritic Stainless Steel Performance in Exhaust Environment

2022-10-05
2022-28-0344
In current scenario, there is trend to use stainless steels in place of carbon steels and aluminized carbon steels for Exhaust application. In response to changing regulatory requirements and durability performance requirements of exhaust systems, the ferritic stainless steels are proven to be best suited for the purpose. There are multiple ferritic stainless steels available as options for exhaust system. The material in an exhaust system is subject to heat, oxidation, corrosion and condensate. These environment condition demands that exhaust material should possess high temperature corrosion and oxidation resistance along with required mechanical performance such as vibration and thermo-mechanical load cycles. This work is an attempt to develop simulated test methods for corrosion and thermal environment and evaluate performance of commonly used ferritic stainless steels.
Technical Paper

Exhaust System Flange Joint Accelerated Durability - A Novel Way Converting Challenges to Opportunity

2021-09-22
2021-26-0472
The main objective of the exhaust system is to offer a leakage proof, noise proof, safe route for exhaust gases from engine to tailpipe, where they are released into the environment, while also processing them to meet the emission norms. New stringent emission norms demand ‘near-zero’ leakage exhaust systems, throughout vehicle life bringing the joints into focus as they are highly susceptible to leakage. Needless to say, this necessitates them to endure not only structural but also the environmental loads, throughout their life. Thus, the fatigue life or durability tests become the most critical part of the exhaust system development. Test acceleration and result correlation (for life prediction), to meet the stringent project timelines and stricter environmental norms are the key considerations for developing a new testing methodology. Quality of accelerated tests is ensured by deploying all possible multiple loads, to simulate real-life conditions.
Technical Paper

External Aerodynamic Drag Coefficient Prediction of Full Scale Passenger Car Based on Scale Model Assessment

2019-01-09
2019-26-0224
Aerodynamics performance evaluation of passenger cars is important during early vehicle development phase as it influences fuel economy, vehicle stability and drivability. Usually during initial styling phase, scale model is prepared and tested in wind tunnel to check aerodynamic performance like drag coefficient and these are used to predict aerodynamic performance of full scale model as testing on full scale model is costly and time consuming. To ensure its correctness, it is important to understand difference in physics from scale model to full scale model. In predicting full vehicle aerodynamics performance from scale model assessment; importance of Reynolds number, effect of geometric scaling on flow i.e. flow separation and wake zone change needs to be understood and addressed. This paper discusses about effect of scaling on aerodynamic flow behavior and drag.
Technical Paper

Grit Blasting on Synchronizer - To Resolve Early Crashing Complaint

2017-06-05
2017-01-1769
In today’s automobile market, most OEMs use manual transmission for cars. Gear Shifting is a crucial customer touch point. Any issue or inconvenience caused while shifting gears can result into customer dissatisfaction and will affect the brand image. Synchronizer is a vital subsystem for precise gear shifting mechanism. Based on vehicle application selection of synchronizer for given inertia and speed difference is a key factor which decides overall shift quality of gearbox. For more demanding driver abuse conditions like skip shifting, conventional brass synchronizers have proved inadequate for required speed difference and gear inertia, which eventually results into synchronizer crashing and affects driving performance. To increase synchronizer performance of multi-cone compact brass synchronizer, a ‘Grit blasting process’ has been added. These components tested with an accelerated test plan successfully.
X